Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 12

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Background: The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine particles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Material and Methods: Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (PCSI) with Teflon filters was used to collect samples of exhaust fume ultrafine particles. PAHs adsorbed on particulate fractions were analyzed by ultra-high pressure liquid chromatography with fluorescence detection (UHPLC/FL). Results: Phenanthrene, fluoranthene, pyrene and chrysene present the highest concentration in the particulate matter emitted by an engine. The total contents of fine particles collected during engine operation on fuels Eco, Verwa and Bio were 134.2 μg/g, 183.8 μg/g and 153.4 μg/g, respectively, which makes 75%, 90% and 83% of the total PAHs, respectively. The highest content of benzo(a)pyrene determined in particles emitted during the combustion of fuels Eco and Bio was 1.5 μg/g and 1 μg/g, respectively. Conclusions: The study of the PAH concentration in the particles of fine fraction below 0.25 μm emitted from different fuels designed for diesel engines indicate that the exhaust gas content of carcinogens, including PAHs deposited on particulates, is still significant, regardless of the fuel. Application of ultrahigh pressure liquid chromatography with fluorescence detection for the analysis of PAHs in the particles emitted in the fine fraction of diesel exhaust allowed to shorten the analysis time from 35 min to 8 min. Med Pr 2014;65(5):601–608
PL
Wstęp: W artykule przedstawiono wyniki oznaczania zawartości wielopierścieniowych węglowodorów aromatycznych (WWA) we frakcji cząstek drobnych emitowanych z 3 rodzajów paliw diesla z zastosowaniem ultraszybkiej chromatografii cieczowej. Materiał i metody: Próbki spalin diesla Eco, Verwa i Bio wytwarzano na modelowym stanowisku, które składało się z silnika wysokoprężnego – Diesel 2.0 TDI z 2007 r. Próbki cząstek drobnych spalin pobierano, stosując próbniki Personal Cascade Sioutas Impactor (PCSI, Indywidualny Impaktor Kaskadowy) z filtrami teflonowymi. Analizę WWA osadzonych na cząstkach stałych spalin prowadzono metodą ultraszybkiej chromatografii cieczowej z detekcją fluorescencyjną (ultra-high pressure liquid chromatography with fluorescence detection – UHPLC/FL). Wyniki: Fenantren, fluoranten, piren i chryzen niezależnie od zastosowanego paliwa obecne były w największych stężeniach w przeliczeniu na masę cząstek stałych emitowanych z silnika. Ich sumaryczna zawartość w cząstkach drobnych zbieranych podczas pracy silnika na paliwie Eco, Verwa i Bio wynosiła odpowiednio 134,2 μg/g, 183,8 μg/g i 153,4 μg/g, co stanowi 75%, 90% i 83% całkowitej zawartości WWA. Największą zawartość benzo(a)pirenu oznaczono w cząstkach emitowanych podczas spalania paliwa Eco i Bio, odpowiednio: 1,5 μg/g i 1 μg/g. Wnioski: Wyniki badań zawartości WWA w cząstkach drobnych frakcji poniżej 0,25 μm emitowanych z różnych paliw przeznaczonych dla silników Diesla wskazują, że mimo wymagań Normy Euro 5 zmniejszenia całkowitej emisji cząstek w spalinach zawartość substancji rakotwórczych, w tym WWA osadzonych na cząstkach stałych, wciąż jest znacząca, niezależnie od paliwa. Zastosowanie UHPLC/FL do analizy WWA w cząstkach frakcji drobnej emitowanej w spalinach diesla pozwoliło skrócić czas analizy z 35 min do 8 min. Med. Pr. 2014;65(5):601–608
EN
Background Chemical substances from the halogenated aliphatic hydrocarbons group are used in industry, e.g., as intermediates in syntheses, auxiliaries, solvents in degreasing processes, and laboratory tests. Due to their harmful effects on human health and the environment, their use is often banned or limited to certain industrial uses only. Material and Methods A sorbent tube containing 2 layers (100/50 mg) of coconut shell charcoal was used as a sampler for air sampling. Gas chromatography-mass spectrometry technique and the use of HP-5MS column (30 m × 0.25 mm × 0.25 μm), an oven temperature ramp program from 40°C to 250°C and selected ion monitoring mode were chosen for the determination. Results The established chromatographic conditions enable the simultaneous determination of tetrachloromethane, trichlorethane, 1,1,2-trichloroethane and tetrachloroethene in the concentration range 2–100 μg/ml. The average desorption coefficients obtained were: 0.97 for tetrachloromethane, 0.96 for trichloroethene, 0.96 for 1,1,2-trichloroethane and 0.96 for tetrachloroethene. Conclusions The calculation of the substance concentration in the analyzed air requires the determination of the amount of substances trapped by the sorbent tube, the desorption coefficient and the air sample volume. Adequate dilution of the extract makes it possible to determine tetrachloromethane, trichloroethene, 1,1,2-trichloroethane and tetrachloroethene in ranges corresponding to 0.1–2 times the maximum admissible concentrations in the workplace air. This article discusses the issues occupational safety and health, which are the subject matter of health sciences and environmental engineering research. Med Pr. 2023;74(1)
PL
Wstęp Substancje chemiczne z grupy chlorowcopochodnych węglowodorów alifatycznych znajdują zastosowanie w przemyśle, m.in. jako półprodukty w syntezach, środki pomocnicze i rozpuszczalniki w procesach odtłuszczania, oraz w badaniach laboratoryjnych. Ze względu na szkodliwe działanie na zdrowie człowieka i środowisko ich stosowanie jest często objęte zakazami i ograniczone do niektórych zastosowań przemysłowych. Materiał i metody Jako próbnik do pobierania próbek powietrza użyto rurki pochłaniającej zawierającej 2 warstwy (100/50 mg) węgla aktywnego na bazie łupin orzecha kokosowego. Do oznaczenia wybrano technikę chromatografii gazowej ze spektrometrią mas z zastosowaniem kolumny HP-5MS (30 m × 0,25 mm × 0,25 μm), programowanego przyrostu temperatury pieca 40–250°C i trybu monitorowania wybranych jonów. Wyniki Ustalone warunki chromatograficzne umożliwiają jednoczesne oznaczenie tetrachlorometanu, trichloroetenu, 1,1,2-trichloroetanu i tetrachloroetenu w zakresie stężeń 2–100 μg/ml. Uzyskane średnie współczynniki desorpcji wyniosły 0,97 dla tetrachlorometanu oraz po 0,96 dla trichloroetenu, 1,1,2-trichloroetanu i tetrachloroetenu. Wnioski Wyliczenie stężeń substancji w analizowanym powietrzu wymaga wyznaczenia ilości substancji zatrzymanych przez rurkę pochłaniającą, współczynnika desorpcji i objętości próbki powietrza. Odpowiednie rozcieńczenie ekstraktu pozwala oznaczyć tetrachlorometan, trichloroeten, 1,1,2-trichloroetan i tetrachloroeten w zakresie odpowiadającym 0,1–2-krotności najwyższych dopuszczalnych stężeń w powietrzu na stanowisku pracy. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z nauk o zdrowiu oraz inżynierii środowiska. Med. Pr. 2023;74(1)
EN
Background: The presence of inorganic acids in the air poses a threat to the health of workers. Volatile inorganic acids, e.g., hydrochloric acid, hydrobromic acid and nitric acid, may cause respiratory, eye and skin irritation. The presented method uses ion chromatography to determine the concentrations of hydrochloric, hydrobromic and nitric acids in air samples. Material and Methods: The method is based on the collection of airborne volatile acids on impregnated quartz fiber filter, extraction of acids with deionized water, and analysis by ion chromatography with conductivity suppression. The separation was performed on the Dionex IonPac™ AS22 (4 × 250 mm) column for trace anion analysis. The carbonate/bicarbonate eluent was maintained at an isocratic flow rate of 1.2 ml/min. The calibration standard solutions have been covering the range of 0.2–5 mg/l of chloride, bromide and nitrate. Results: The specified chromatographic conditions enable selective measurement of chloride, bromide and nitrate anions. The obtained mass concentration of each anion, having factored in the sample dilution, the conversion factor (to convert anion concentration to acid) and the volume of the air sample, allows the calculation of acid concentrations in the analyzed air. Conclusions: This method makes it possible to determine the concentration of hydrochloric acid, hydrobromic acid and nitric acid in the workplace air within the concentration range corresponding to 0.1–2 times the exposure limit value in Poland. The method meets the criteria for the performance of procedures for the measurement of chemical agents, listed in PN-EN 482. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Wstęp: Obecność kwasów nieorganicznych w powietrzu stanowi zagrożenie dla zdrowia pracowników. Lotne kwasy nieorganiczne, np. chlorowodorowy, bromowodorowy i azotowy(V), mogą powodować podrażnienie dróg oddechowych, oczu i skóry. Przedstawiona metoda wykorzystuje chromatografię jonową do oznaczania stężeń kwasów chlorowodorowego, bromowodorowego i azotowego(V) w próbkach powietrza. Materiał i metody: Metoda polega na zbieraniu lotnych kwasów unoszących się w powietrzu na impregnowanym filtrze z włókna kwarcowego, wymyciu ich wodą dejonizowaną i analizie otrzymanych roztworów metodą chromatografii jonowej z detekcją konduktometryczną. W badaniu stosowano kolumnę analityczną Dionex IonPac®AS22 (4 × 250 mm) przeznaczoną do rozdzielania i oznaczania anionów nieorganicznych. Fazą nośną w analizie jonów była mieszanina wodorowęglanu sodu i węglanu sodu o natężeniu przepływu 1,2 ml/min. Wzorcowe roztwory kalibracyjne obejmowały zakres stężeń 0,2–5 mg/l chlorków, bromków i azotanów. Wyniki: Określone warunki chromatograficzne umożliwiają selektywny pomiar anionów chlorkowych, bromkowych i azotanowych. Otrzymane stężenie masowe każdego anionu po uwzględnieniu rozcieńczenia próbki, współczynnika konwersji (przeliczającego stężenie anionów na kwas) i objętości próbki powietrza pozwala na obliczenie stężeń kwasów w analizowanym powietrzu. Wnioski: Metoda ta umożliwia oznaczenie stężeń kwasów chlorowodorowego, bromowodorowego i azotowego(V) w powietrzu na stanowisku pracy w zakresie stężeń odpowiadającym 0,1–2-krotności wartości dopuszczalnych obowiązujących w Polsce. Metoda spełnia kryteria wykonywania procedur pomiaru czynników chemicznych wymienione w PN-EN 482. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Background Occupational exposure to wood dust can be responsible for many different harmful health effects, especially in workers employed in the wood industry. The assessment of wood dust adverse effects to humans, as well as the interpretation of its concentration measurements carried out to assess potential occupational exposure are very difficult. First of all, it is due to possible occurrence of different kind of wood dust in the workplace air, namely wood dust from dozens of species of trees belonging to 2 kinds of botanical gymnosperms and angiosperms, as well as to its different chemical composition. Material and Methods Total dust and respirable wood dust in the workplace air in the furniture industry was determined using the filtration-gravimetric method in accordance with Polish Standards PN-Z-04030-05:1991 and PN-Z-04030-06:1991. Air samples were collected based on the principles of individual dosimetry. Results Total dust concentrations were 0.84–13.92 mg/m3 and inhalable fraction concentrations, obtained after the conversion of total dust by applying a conversion factor of 1.59, were 1.34–22.13 mg/m3. Respirable fraction concentrations were 0.38–4.04 mg/m3, which makes approx. 25% of the inhalable fraction on average. The highest concentrations occurred in grinding and the lowest during milling processes of materials used in the manufacture of furniture. Conclusions The results indicate that the share of respirable fraction in the inhalable fraction of wood dust is considerable. Due to the determination of the threshold limit value (TLV) for the inhalable fraction of wood dust, it is necessary to replace the previously used samplers for total dust with samplers that provide quantitative separation of wood dust inhalable fractions in accordance with the convention of this fraction as defined in PN-EN 481:1998. Med Pr 2017;68(1):45–60
PL
Wstęp Narażenie zawodowe na pyły drewna może powodować szkodliwe następstwa zdrowotne. Przede wszystkim stanowią one zagrożenie dla zdrowia pracowników zatrudnionych w zakładach przemysłu drzewnego. Ocena szkodliwego oddziaływania pyłów drewna, jak również interpretacja wyników pomiarów stężeń prowadzonych w celu oceny narażenia zawodowego, jest bardzo trudnym i skomplikowanym zadaniem. Problemy te wynikają z możliwości występowania w powietrzu na stanowiskach pracy pyłów drewna pochodzących z kilkudziesięciu gatunków drzew należących do 2 gromad – nagonasiennych (drzewa iglaste) i okrytonasiennych (drzewa liściaste), a także różniących się składem chemicznym i gęstością (twardością). Materiał i metody Pył całkowity i frakcję respirabilną na stanowiskach pracy w zakładach przemysłu meblowego oznaczano metodą filtracyjno-wagową, zgodnie z normami PN-Z-04030-05:1991 i PN-Z-04030-06:1991. Próbki powietrza do badań pobierano, stosując zasady dozymetrii indywidualnej. Wyniki Stężenia pyłu całkowitego wynosiły 0,84–13,92 mg/m³, a stężenia frakcji wdychalnej, uzyskane po przeliczeniu pyłu całkowitego po zastosowaniu współczynnika 1,59, 1,34–22,13 mg/m³. Stężenia frakcji respirabilnej wynosiły 0,38–4,04 mg/m³, co stanowi średnio ok. 25% frakcji wdychalnej. Najwyższe stężenia obydwu frakcji pyłu drewna występowało na stanowiskach szlifowania, a najniższe podczas frezowania materiałów stosowanych do produkcji mebli. Wnioski Wyniki pomiarów stężeń pyłów drewna mieszanego w zakładach produkujących meble wskazują, że udział frakcji respirabilnej we frakcji wdychalnej tych pyłów jest znaczny. Z uwagi na ustalenie wartości najwyższych dopuszczalnych stężeń (NDS) dla frakcji wdychalnej pyłów drewna konieczne jest zastąpienie dotychczas stosowanych próbników do oznaczania pyłu całkowitego próbnikami, które zapewnią ilościowe wyodrębnienie frakcji wdychalnej pyłów drewna zgodnie z konwencją tej frakcji określoną w normie PN-EN 481:1998. Med. Pr. 2017;68(1):45–60
EN
ObjectivesThe objective of the work was to analyze the impact of selected factors concerning the use and maintenance of firefighters’ protective clothing worn during rescue operations on the hazard of contamination by chemical substances.Material and MethodsThe participants were firefighters (N = 688) from rescue and firefighting units of the State Fire Service in Poland, aged <30, 31–40, 41–50 or >60 years, with different seniority: up to >21 years of service. The survey questionnaire developed by the authors was used. The questionnaire was available online. The Statistica 10.0 statistical package using the χ2 test was applied in the analysis of the significance of the results.ResultsAs reported by the vast majority (>60%) of the firefighters, the maintenance was carried out after recording an average or a high level of contamination. It was pointed out that removal of the contaminants from protective clothing was difficult (83%). The surfaces of the legs and sleeves of protective clothing were the most contaminated areas. A feeling of discomfort was observed (90%) after returning from firefighting operations due to fire, smoke, or combustion residues.ConclusionsIt is necessary to conduct training and information actions concerning the use and maintenance of protective clothing and the harmfulness of chemicals contaminating the garments used by firefighters.
EN
Background: This article presents the study of polycyclic aromatic hydrocarbons (PAHs) adsorbed on fine particles emitted during the simulated operation of office printers and copiers. Material and Methods: In the study three types of printers, and four types of office copiers were used. Measurements were carried out in a closed measuring chamber. Air samples (fractions of particulate matter, PM 10 and PM 2.5) were collected on Teflon filters. The analysis of PAHs was carried out according HPLC/FL. Results: The results of qualitative analysis of filters from PM 2.5 and PM 10 type samplers indicated the presence of the majority (10–14) of PAH congeners. The highest concentration of total PAHs was determined in the PM 10 fraction in the air during the operation of a copier, and amounted to 36.52 μg×g -¹. The total content of PAHs as determined in the fraction of fine particulates, size of < 2.5 μm, accounts for 48–84% of the PAH content in the < 10 μm fraction for printers and 63–89% for copiers. During the operation of both printers and copiers, benzo(a)pirene (BaP) was identified in both fractions, PM 2.5 and PM 10. The maximum concentration of BaP in the fraction of < 10 μm particles emitted by a printer amounted to 3.29±0.2 μg×g -¹. Conclusions: The studies showed that the composition of emitted substances and fine particles depends on the type of equipment and technology used. Fine particles emitted to the environment and organic compounds, including PAHs adsorbed on them may pose a threat to people working in such an environment. Med Pr 2014;65(6):733–741
PL
Wstęp: W artykule przedstawiono wyniki badań wielopierścieniowych węglowodorów aromatycznych (WWA) zaadsorbowanych na cząstkach drobnych emitowanych podczas pracy urządzeń powielających. Materiał i metody: Do badań wytypowano 3 rodzaje drukarek i 4 rodzaje kserokopiarek. Pomiary prowadzono w zamkniętej komorze pomiarowej, którą dodatkowo umieszczono pod wyciągiem laboratoryjnym. W komorze umieszczano urządzenia drukujące lub kopiujące oraz aspiratory połączone z próbnikami. Próbki powietrza pobierano na filtry teflonowe, umieszczone w próbnikach do pobierania frakcji pyłu drobnego (particulate matter – PM) PM 10 i PM 2,5. Analizę WWA osadzonych na cząstkach stałych, emitowanych z urządzeń powielających, prowadzono metodą wysokosprawnej chromatografii cieczowej z detekcją fluorescencyjną (high pressure liquid chromatography with fluorescence detection – HPLC/FL). Wyniki: Wyniki analizy jakościowej wykazały obecność większości 10–14 wielopierścieniowych węglowodorów aromatycznych. Największe stężenie sumy WWA (36,52 μg×g -¹) oznaczono we frakcji PM 10 w powietrzu podczas pracy kserokopiarki. Sumaryczną zawartość WWA oznaczona we frakcji cząstek drobnych < 2,5 μm stanowią 48–84% zawartości WWA we frakcji < 10 μm w przypadku drukarek i 63–89% w przypadku kserokopiarek. Zarówno podczas pracy urządzeń drukujących, jak i powielających w obydwu frakcjach PM 2,5 oraz PM 10 zidentyfikowano benzo(a)piren (BaP). Maksymalne stężenie BaP we frakcji cząstek < 10 μm emitowanych z drukarki wynosiło 3,29±0,2 μg×g -¹. Wnioski: Badania wykazały, że stężenie emitowanych substancji zaadsorbowanych na PM 10 i PM 2,5 oraz stężenie tych cząstek w powietrzu nie jest stałe i zależy od rodzaju stosowanego urządzenia, rodzaju tonera i szybkości powielania. Emitowane do środowiska pracy cząstki drobne oraz osadzone na nich WWA mogą stanowić zagrożenie dla osób pracujących w ich otoczeniu. Med. Pr. 2014;65(6):733–741
EN
Background This paper presents and discusses the results of the determination of elemental carbon emitted in diesel engine exhaust into the air of workplaces where machines and equipment with diesel engines are used. In order to assess occupational exposure to elemental carbon (EC) as a marker of exhaust gases emitted by diesel engines, 51 ground-based workplaces where people who operate or maintain equipment with this type of engine work were measured. Measurements were also carried out at 9 workplaces in non-coal mines. Material and Methods For air sampling at workplaces of diesel exhaust emitting machines and equipment located on the surface, a cartridge sampler without an impactor with a quartz filter was used for elemental carbon determination, while for measurements in non-coal mines the Higgins-Dewell Cyclone FH022 respirable fraction sampler was used. The thermo-optical carbon analysis method using a flame ionisation detector was used to determine elemental carbon. Results Analysis of the results of the determined elemental carbon concentrations at workplaces located on the ground, i.e., in car repair shops, and in the steelworks where combustion forklifts are operated, showed that the highest concentrations of elemental carbon were determined at the old forklift workplaces in the steelworks. The determined EC concentrations at these workstations were 353 μg/m³ and 78 μg/m³, respectively. In the non-coal mines, elemental carbon concentrations were in the range of 7.5–50 μg/m³. Conclusions Exposure assessment at the surveyed workplace in the steelworks showed the highest 7-fold exceedance of the maximum admissible concentration (MAC) at the position of the combustion forklift operator. At the other surveyed workplaces in the car repair shop the marked concentrations were in the range of 0.1–0.5 MAC or <0.1 MAC. In non-coal mines, the determined concentrations ranged 0.12–1 times the MAC. Med Pr. 2023;74(2)
PL
Wstęp W artykule przedstawiono i omówiono wyniki oznaczania węgla elementarnego (elemental carbon – EC) emitowanego w spalinach silników Diesla (SSD) do powietrza stanowisk pracy, na których były wykorzystywane maszyny i urządzenia z takimi silnikami. Narażenie zawodowe na EC jako marker SSD oceniono, obejmując pomiarami 51 naziemnych stanowisk pracy z obsługą lub konserwacją silników Diesla. Przeprowadzono również pomiary na 9 stanowiskach pracy w kopalniach niewęglowych. Materiał i metody Do pobierania próbek powietrza na stanowiskach pracy maszyn i urządzeń emitujących SSD zlokalizowanych na powierzchni do oznaczania EC wykorzystano próbnik kasetowy bez impaktora z filtrem kwarcowym, a w przypadku pomiarów w kopalniach niewęglowych – próbnik do frakcji respirabilnej typu Higgins-Dewell Cyclone FH022. Do oznaczania EC zastosowano metodę analizy termo-optycznej węgla z wykorzystaniem detektora płomieniowo-jonizacyjnego. Wyniki Analiza wyników pomiarów na stanowiskach pracy zlokalizowanych na powierzchni, tj. w warsztatach samochodowych i hucie stali, wykazała, że największe stężenia EC występowały na stanowiskach pracy związanych z obsługą starych wózków widłowych. Oznaczone tam stężenia EC wynosiły, odpowiednio, 353 μg/m³ i 78 μg/m³. W kopalniach niewęglowych stężenie EC wynosiło natomiast 7,5–50 μg/m³. Wnioski Ocena narażenia na badanych stanowiskach w hucie stali wykazała największe, 7-krotne, przekroczenie najwyższego dopuszczalnego stężenia (NDS) na stanowisku operatora spalinowego wózka widłowego. Na pozostałych badanych stanowiskach pracy w warsztatach samochodowych oznaczone stężenia wynosiły 0,1–0,5 NDS lub <0,1 NDS. W kopalniach niewęglowych oznaczone stężenia odpowiadały natomiast 0,12–1 krotności NDS. Med. Pr. 2023;74(2)
EN
Background A growing number of cancer cases enhances the usage of cytostatic agents and thereby contributes to the increase in the number of health care workers occupationally exposed to cytostatics. Material and Methods This article presents the results of the survey aimed at obtaining data on the reduction of occupational exposure through using personal protective equipment by the medical and pharmaceutical personnel involved in handling cytostatics. The questionnaires were sent by mail or e-mail to oncology hospitals and pharmacies preparing cytostatic drugs. Responses were received from 94 people employed in these workplaces. The main questions concerned the forms of cytostatics; job activities; types of personal protective equipment used and working time under exposure to cytotoxic drugs. Results The majority (over 90%) of the healthcare personnel declared the use of personal protective equipment when working under conditions of exposure to cytostatic drugs. Depending on the type of protection, 15–35% of people reported that the most frequent time of their single use of the apron, the overalls, the gloves, the cap, the goggles or the respirators did not exceed few minutes. Gloves were changed most frequently. However, half of the responses indicated that the time after which the respondents removed protection equipment greatly differed. Conclusions Almost the whole group of respondents applied personal protective equipment when working under exposure to cytostatics. However, personal protective equipment was not used every time in case of exposure. The medical and pharmaceutical staff worked under exposure to cytostatics for a few or even dozen hours during the working day. Med Pr 2016;67(4):499–508
PL
Wstęp Ze względu na zwiększającą się liczbę zachorowań na choroby nowotworowe coraz powszechniej stosowane są leki cytostatyczne, w czego wyniku coraz więcej pracowników ochrony zdrowia jest narażonych na cytostatyki podczas wykonywania czynności zawodowych. Materiał i metody W artykule przedstawiono wyniki badań ankietowych, których celem było uzyskanie danych dotyczących sposobów zmniejszania za pomocą środków ochrony indywidualnej narażenia zawodowego na cytostatyki personelu medycznego i farmaceutycznego. Ankiety rozesłano pocztą lub drogą elektroniczną do oddziałów onkologicznych i aptek przygotowujących leki cytostatyczne. Odpowiedzi otrzymano od 94 osób zatrudnionych w tych miejscach pracy. Pytania dotyczyły m.in. postaci leków cytostatycznych, wykonywanych czynności, rodzajów używanych środków ochrony indywidualnej i czasu pracy w warunkach narażenia na cytostatyki. Wyniki Pracownicy ochrony zdrowia w zdecydowanej większości (ponad 90%) deklarowali, że stosują środki ochrony indywidualnej podczas prac w warunkach narażenia na cytostatyki. Czas jednorazowego stosowania fartucha, kombinezonu, rękawic, czepka, okularów lub półmaski wynosił najczęściej kilka minut. Stwierdziło tak, w zależności od rodzaju ochrony, 15–35% osób. Najczęściej zmieniano rękawice. Połowa odpowiedzi wskazywała, że ankietowani zdejmowali środki ochrony po bardzo różnym czasie. Wnioski Prawie wszystkie badane osoby stosowały środki ochrony indywidualnej podczas pracy w warunkach narażenia na kontakt z cytostatykami. Środki ochrony indywidualnej nie były jednak stosowane za każdym razem. Personel medyczny i farmaceutyczny pracował w warunkach narażenia na cytostatyki przez kilka lub nawet kilkanaście godzin w ciągu dnia pracy. Med. Pr. 2016;67(4):499–508
EN
Background The article presents the results of the determination of the inhalable and thoracic fraction of sulfuric acid(VI) in 3 workplaces producing or processing this chemical. Material and Methods To collect thoracic fractions of sulfuric acid(VI) Parallel Particle Impactor (PPI) was used. To isolate inhalable fraction of sulfuric acid(VI) from the air we used a sampler developed at the Institute of Occupational Medicine (IOM), United Kingdom. Parallel Particle Impactor and IOM samplers worked with pumps at a flow of 2 l/min. For the chromatographic determination of the inhalable and thoracic fraction of sulfuric acid(VI) in workplace the ion chromatography with conductometric detection was used. Results Depending on the sampling place the concentration of thoracic fraction of sulfuric acid(VI) was: 0.0015–0.01 mg/m³ in workplace A, 0.0019–0.25 mg/m³ in workplace B, and 0.002–0.01 mg/m³ in workplace C. Of 22 tested workstations in workplace B only 7 exceeded the threshold limit value (TLV) for the concentration of thoracic fraction of sulfuric acid(VI). Conclusions The results confirmed the utility of PPI for sampling the thoracic fraction of sulfuric acid(VI). The studies show that at 22 workstations in the establishments producing or processing sulfuric acid(VI) thoracic fraction of acid is emitted to the work environment. The collected data showed that the thoracic fraction of sulfuric acid(VI) represents on average 64% of the inhalable fraction. Med Pr 2016;67(4):509–515
PL
Wstęp W artykule przedstawiono wyniki oznaczania frakcji torakalnej i wdychalnej kwasu siarkowego(VI) w powietrzu stanowisk pracy w 3 zakładach produkujących lub przetwarzających ten związek chemiczny. Materiał i metody Do poboru frakcji torakalnej zastosowano impaktor cząstek (parallel particle impactor – PPI, prod. SKC Inc., USA), natomiast do poboru frakcji wdychalnej – próbnik opracowany w Institute of Occupational Medicine (IOM, Wielka Brytania). Próbniki PPI i IOM pracowały z aspiratorami o przepływie 2 l/min. Do chromatograficznego oznaczania frakcji torakalnej i wdychalnej kwasu siarkowego(VI) zastosowano chromatografię jonową z detekcją konduktometryczną. Wyniki W zależności od miejsca poboru próbek stężenie kwasu dla frakcji torakalnej wynosiło 0,0015–0,01 mg/m³ w zakładzie A, 0,0019–0,25 mg/m³ w zakładzie B i 0,002–0,01 mg/m³ w zakładzie C. Tylko na 7 stanowiskach pracy (w zakładzie B) z ogółem 22 przebadanych stwierdzono przekroczenie wartości najwyższego dopuszczalnego stężenia (NDS) frakcji torakalnej kwasu siarkowego(VI). Wnioski Wyniki badań potwierdzają przydatność próbnika PPI do oznaczania frakcji torakalnej kwasu siarkowego(VI). Wykazano, że na 22 zbadanych stanowiskach pracy w zakładach produkujących lub przetwarzających kwas siarkowy(VI) do środowiska pracy emitowana jest frakcja torakalna kwasu. Z zebranych danych wynika, że frakcja torakalna kwasu siarkowego(VI) stanowi średnio 64% frakcji wdychalnej. Med. Pr. 2016;67(4):509–515
EN
Background: This paper presents the results of the quantitative study of the airborne chemical substances detected in the conservator's work environment. Material and Methods: The quantitative tests were carried out in 6 museum easel paintings conservation studios. The air test samples were taken at various stages of restoration works, such as cleaning, doubling, impregnation, varnishing, retouching, just to name a few. The chemical substances in the sampled air were measured by the GC-FID (gas chromatography with flame ionization detector) test method. Results: The study results demonstrated that concentrations of airborne substances, e.g., toluene, 1,4-dioxane, turpentine and white spirit in the work environment of paintings conservators exceeded the values allowed by hygiene standards. It was found that exposure levels to the same chemical agents, released during similar activities, varied for different paintings conservation studios. It is likely that this discrepancy resulted from the indoor air exchange system for a given studio (e.g. type of ventilation and its efficiency), the size of the object under maintenance, and also from the methodology and protection used by individual employees. Conclusions: The levels of organic solvent vapors, present in the workplace air in the course of painting conservation, were found to be well above the occupational exposure limits, thus posing a threat to the worker's health. Med Pr 2014;65(1):33–41
PL
Wstęp: W artykule przedstawiono wyniki badań ilościowych substancji chemicznych występujących w powietrzu stanowisk pracy konserwatorów malarstwa. Materiały i metody: Badania przeprowadzono w 6 muzealnych pracowniach konserwacji malarstwa. Próbki powietrza do badań pobierano na różnych etapach prac konserwatorskich (czyszczenie, dublowanie, impregnacja, werniksowanie, retusz). Analizę ilościową substancji chemicznych w pobranych próbkach powietrza prowadzono metodą chromatografii gazowej z detekcją płomieniowo-jonizacyjną (gas chromatography with flame ionization detector - GC-FID). Wyniki: Podczas badań w powietrzu środowiska pracy konserwatora malarstwa substancje takie, jak toluen, 1,4-dioksan, terpentyna i benzyna do lakierów występowały w stężeniach znacznie przekraczających wartości normatywów higienicznych. Narażenie na te same czynniki chemiczne podczas wykonywania podobnych czynności w badanych pracowniach było różne. To zróżnicowanie wynika ze sposobu wymiany powietrza w pomieszczeniach (rodzaju wentylacji i jej sprawności), wielkości obiektu poddawanego konserwacji, ale także od sposobu prowadzenia prac przez pracowników i stosowania środków prewencji. Wnioski: Podczas wykonywania prac konserwatorskich pary niektórych rozpuszczalników organicznych występują w powietrzu w ilościach znacznie przekraczających najwyższe dopuszczalne stężenia, stanowiąc zagrożenie dla zdrowia pracowników. Med. Pr. 2014;65(1):33–41
EN
Objectives The objective of the work was to determine the resistance of selected protective clothing and glove materials to permeation of cytostatics such as docetaxel, fluorouracil, and doxorubicin. Material and Methods The following glove materials were used: natural rubber latex (code A), acrylonitrile-butadiene rubber (code B) and chloroprene rubber (code C). In addition, we tested a layered material composed of a non-woven polyester (PES), a polypropylene (PP) film, and a non-woven PP used for protective coats (code D). The cytostatics were analyzed by liquid chromatography with diode array detection. The tested samples were placed in a purpose-built permeation cell modified to be different from that specified in the standard EN 6529:2001. Results The tested materials were characterized by good resistance to solutions containing 2 out of the 3 selected cytostatics: doxorubicin and 5-fluorouracil, as indicated by a breakthrough time of over 480 min. Equally high resistance to permeation of the third cytostatic (docetaxel) was exhibited by natural rubber latex, acrylonitrile-butadiene rubber, and chloroprene rubber. However, docetaxel permeated much more readily through the clothing layered material, compromising its barrier properties. Conclusions It was found that the presence of additional components in cytostatic preparations accelerated permeation through material samples, thus deteriorating their barrier properties. Int J Occup Med Environ Health 2018;31(3):341–350
EN
This paper discusses the potential of additive printing, the risks it poses to users’ health (including 3D printer operators) and the effects of chemical substances released during the printing based on the available in vitro and in vivo studies. It was shown that substances emitted during printing with the commonly used acrylonitrile butadiene styrene filament in additive manufacturing might have carcinogenic, hepatotoxic and teratogenic effects, as well as toxic effect on the respiratory system. The latest research on the mechanism of formation of particles and volatile organic compounds during 3D printing, the parameters affecting their potential emission, and trends in reducing these hazards are indicated. The need for the design of more environmentally friendly and less emissive printing materials, as well as strategies for prevention and individual and collective protection measures are emphasized. Users of 3D printers should be familiar with all possible aspects of the threats associated with the printing process. Insufficient data on direct exposure to chemicals and particles released during the use of filaments makes it difficult to build awareness of safe working practices. Of particular concern is the health impact of emitted chemicals and particles from thermally treated materials in one of the most popular technologies for 3D printing, i.e., fused deposition modelling. Exposure of the users to, e.g., plasticizers added to filaments occurs through a variety of routes, by absorption through the skin, by inhalation or ingestion. Available epidemiological data, as well as current experimental works, indicate that such exposure is a high risk of cardiovascular diseases, atherosclerosis in adults, and cardiac problems and metabolic disorders in children. This review, by identifying potential risk factors, may contribute to reducing the health loss of printer users and improving working conditions and safety, especially in enterprises where additive manufacturing technology is used.
PL
W artykule omówiono potencjał drukowania addytywnego, zagrożenia, jakie wynikają z jego stosowania dla zdrowia użytkowników (w tym operatorów drukarek 3D) i skutki oddziaływania substancji uwalnianych podczas tego procesu na podstawie dostępnych badań in vitro i in vivo. Wykazano, że substancje emitowane podczas drukowania z wykorzystaniem powszechnie stosowanego filamentu poli(akrylonitrylu-co-butadienu-co-styrenu) w produkcji przyrostowej mogą cechować się działaniem rakotwórczym, hepatotoksycznym i teratogennym oraz oddziaływać toksycznie na układ oddechowy. Wskazano najnowsze badania dotyczące mechanizmu powstawania cząstek stałych i lotnych związków organicznych podczas drukowania przestrzennego, parametrów wpływających na ich potencjalną emisję oraz kierunki ograniczania tych zagrożeń. Podkreślono konieczność opracowania przyjaźniejszych dla środowiska i mniej emisyjnych materiałów do druku oraz strategii prewencji i środków ochrony indywidualnej oraz zbiorowej. Użytkownicy drukarek 3D powinni poznać wszystkie możliwe aspekty zagrożeń związanych z procesem drukowania. Zbyt mała ilość danych dotyczących bezpośredniego narażenia na substancje chemiczne i cząstki stałe uwalniane podczas użytkowania filamentów utrudnia budowanie świadomości bezpiecznej pracy. Szczególnie istotny jest wpływ emitowanych związków chemicznych i cząstek stałych z materiałów poddanych obróbce termicznej w jednej z najpopularniejszych technologii druku 3D, tj. osadzania topionego materiału, na zdrowie drukujących. Narażenie użytkowników np. na dodawane do filamentów plastyfikatory następuje różnymi drogami – przez skórę oraz układy oddechowy i pokarmowy. Dostępne dane epidemiologiczne i najnowsze prace eksperymentalne wskazują, że taka ekspozycja to wysokie ryzyko chorób układu naczyniowo-sercowego i miażdżycy u dorosłych lub problemów kardiologicznych i zaburzeń metabolicznych u dzieci. Niniejszy przegląd poprzez wskazanie potencjalnych czynników ryzyka może przyczynić się do ograniczenia utraty zdrowia użytkowników drukarek i poprawy warunków oraz bezpieczeństwa pracy przede wszystkim w przedsiębiorstwach, w których wykorzystuje się technologię wytwarzania addytywnego.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.