Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The paper presents results of research on the production, properties and application of polyacrylonitrile (PAN) based membranes with the addition of multi-wallet carbon nanotubes (MWCNT) for the removal of heavy metals such as lead, zinc, cobalt and nickel from water and wastewater. The introduction of the MWCNT additive into the PAN matrix slowed down the membrane coagulation process, which resulted in an increase in their mass per unit area, thickness, apparent density and porosity, pore size of the membranes and improved the transport and separation properties. PAN membranes were obtained using phase inversion method. First, a 12% solution of PAN in DMF was prepared. Membrane-forming solutions containing 0.1, 0.5, and 1.0% of MWCNT respectively were prepared to form MWCNT/PAN composite membranes. Of all the composite membranes MWCNT/PAN obtained, the membrane “1” was characterized by the best properties. The pure water flux through membrane “1” was 9-12 fold higher than in the unmodified membrane (“0”). Performing structural tests enabled to explain phenomena observed during physicochemical properties tests. When analyzing the SEM photomicrographs (cross-section, bottom layer), it can be reported that the best structural is characterized by membrane “1”. The satisfactory results of transport membrane research encouraged to analyze the separation properties of composite membranes MWCNT/PAN. In order to test the separation properties, water with individual ions and ions in the electroplating wastewater was analyzed in terms of the use of the membranes for heavy metals removal. The examination of water individual ions was determined by atomic absorption spectrometry showed that only Zn2+ and Co2+ ions were completely removed (100%) on each of the membranes obtained in the experiment. The degree of heavy metals removal for all the obtained membranes and for subsequent ions was estimated at: 100% (Co2+), 70-100% (Zn2+), 65-100% (Ni2+) and 62-100% (Pb2+) for water and wastewater. The yielded results may indicate the occurrence of competitive reactions leading to preferential removal of metals from the electroplating wastewater.
EN
The presented paper contains issues related to corrosion of water supply lines formed in cast iron and steel. This process can manifest in different ways, including pipe degradation, release of iron by-products, water flow restriction, microbial growth and the reduction of drinking water safety for consumers, which present a significant threat to water supply safety. The aim of the paper was to show changes that emerged in pipes formed in grey cast iron and steel as a result of potable water flow depending on the duration of their use. The corrosion scales from old water pipe lines were analyzed for their structure and composition. The description of the test methodology presents the procedure regarding, analysis of the inner and outer coating with the use of scanning equipment, and chemical analysis of the corrosion sludge. In this study, corrosion products were carefully collected from four old, corroded iron pipes made of different materials – gray cast iron and steel. It can be concluded that scale characteristics, including micromorphology, porosity and composition, vary significantly due to different pipe materials and times operating. Characteristics of corrosions scales sampled from different pipe segments show obvious differences, both in physical and chemical aspects. Corrosion scales were found highly amorphous. Diverse results can be observed in the case of the test of inner and outer surface of water supply pipes with the use of scanning equipment. The highest quantity of corrosion pits in the structure were present in the line formed in grey cast iron no. 2, while the deepest pits – over 14 mm – were recorded in steel pipe no. 4. Lines with the most reduced cross-section include steel pipe no. 3, which was characterized by presence of sludge sized over 26 mm. When considering the issue of the chemical composition of the formed corrosion sludge, particular attention must be drawn to the elements that may penetrate into water as a result of its flow, thus causing a considerable deterioration of its quality in chemical and physical terms. Among the major constituent elements of the deposits, iron was most prevalent followed, in the order of decreasing prevalence, by silicon, aluminum, sulfur, calcium, manganese, magnesium. Consequently, characterization of corrosion scales is indispensable to water quality protection.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.