Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  czynnik rakotwórczy
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Background: The aim of this paper is to present a concise but comprehensive information on the occurrence of carcinogenic or mutagenic agents in Polish enterprises and the number of workers exposed to those agents reported to the central register by employers. Objectives and responsibilities of the register, as well as the range and methods of data gathering are discussed. Material and Methods: Data concerning carcinogenic or mutagenic chemical substances and technological processes reported to central register in 2008-2010 were analyzed. Results: In 2008-2010 more than 300 carcinogenic or mutagenic chemical substances were reported to the register. Approximately 2500 plants reported above 150 000 per-person-exposures annually. Among all technological processes regarded as occupational carcinogens, hardwood dusts exposure (about 660 companies; 11 000-13 000 exposed workers each year) and exposure to polycyclic aromatic hydrocarbons (PAHs) present in coal products (117-125 plantsl 3000 exposed per year) were reported. Conclusions: The most widespread carcinogenic/mutagenic substances were: benzene, chromium(VI) compounds: potassium dichromate and chromate, chromium(VI) trioxide and other chromium compounds, ethylene oxide, asbestos, benzo[a]pyrene and gasoline. The highest number of men was exposed to particular PAHs and benzene , and the majority of women was exposed to benzene, potassium dichromate and chromate, acrylamide, ethylene oxide and gasoline. The lack of clear-cut definitione of occupational exposure to carcinogen creates a problem faced by employers in defining the accurate number of exposed workers. Med Pr 2013;64(2):181–192
PL
Wstęp: Celem artykułu jest przedstawienie informacji o występowaniu w zakładach pracy w Polsce czynników o działaniu rakotwórczym lub mutagennym oraz o liczbie zgłoszonych przez pracodawców osób narażonych zawodowo na te czynniki na podstawie danych zgromadzonych w centralnym rejestrze. Omówiono cele i zadania prowadzonego rejestru oraz zakres i sposób gromadzenia danych. Materiał i metody: Analizie poddano dane dotyczące substancji chemicznych i procesów technologicznych o działaniu rakotwórczym lub mutagennym nadesłane do centralnego rejestru w latach 2008-2010. Wyniki: W omawianych latach zgłoszono do rejestru ponad 300 rakotwórczych lub mutagennych substancji chemicznych (corocznie zgłaszało je ok. 2,5 tys. zakładów pracy). Spośród procesów technologicznych uznanych za zawodowe kancerogeny wykazywano prace w narażeniu na pyły drewna twardego oraz procesy technologiczne związane z narażeniem na wielopierścieniowe węglowodory aromatyczne (WWA) obecne w produktach węglowych. Prace w kontakcie z pyłami drewna twardego zgłaszało corocznie po ok. 660 zakładów pracy, a liczba zgłoszonych osób zawodowo narażonych na ten czynnik wynosiła 11-13 tys. rocznie. Procesy technologiczne związane z narażeniem na WWA obecne w produktach węglowych zgłaszało 117-125 zakładów pracy, a osób narażonych zgłaszano ok. 3 tys. rocznie. Wnioski: Najbardziej rozpowszechnionymi rakotwórczymi/mutagennymi substancjami chemicznymi były benzen, związki chromu(VI) - dichromian(VI) i chromian(VI) potasu, tritlenek chromu oraz inne związki chromu(VI), tlenek etylenu, azbest, benzo[a]piren oraz jedna z niespecyfikowanych benzyn. Najwięcej mężczyzn było narażonych na poszczególne WWA i benzen, a kobiet - na benzen, dichromian(VI) potasu, chromian(VI) potasu, akrylamid, tlenek etylenu i niespecyfikowaną benzynę. Brak jednoznacznej definicji narażenia na czynniki rakotwórcze powoduje, że pracodawcy mają problem z właściwym określeniem liczby narażonych pracowników. Med. Pr. 2013;64(2):181–192
EN
Background 3,3’-Dimethylbenzidene (DMB) is a substance classified into the group of carcinogens. The value of maximum admissible concentration for this substance in the workplace air is not specified in Poland. Bearing in mind that DMB is used in domestic companies there is a need to develop a sensitive method for determining 3,3’-dimethylbenzidine in the work environment. Material and Methods The method consists in passing DMB-containing air through sulfuric acid-treated glass fiber filters, washing out the substance settled on the filter, using water and solution of sodium hydroxide, liquid–liquid extraction with toluene, replacing dissolvent with acetonitrile and analyzing the obtained solution. Studies were performed using high-performance liquid chromatography (HPLC) technique. An Agilent Technologies chromatograph, series 1200, with a diode-array detector (DAD) and a fluorescence detector (FLD) was used in the experiment. In the test, an Ultra C18 column of dimensions: 250×4.6 mm, particle diameter (dp) = 5 μm (Restek) was applied. Results The method is linear (r = 0.999) within the investigated working range of concentration 1.08–21.6 μg/ml, which is equivalent to air concentrations 2–40 μg/m³ for a 540 l air sample. The limit of detection (LOD) of quantification determination is 5.4 ng/ml and the limit of quantification (LOQ) – 16.19 ng/ml. Conclusions The analytical method described in this paper allows for selective determination of 3,3’-dimethylbenzidine in the workplace air in the presence of 1,4-phenylenediamine, benzidine, aniline, 3,3’-dimethoxybenzidine, 2-nitrotoluene, 3,3’-dichlorobenzidine and azobenzene. The method is characterized by good precision and good accuracy, it also meets the criteria for procedures involving the measurement of chemical agents, listed in EN 482:2012. Med Pr 2016;67(1):43–50
PL
Wstęp 3,3’-Dimetylobenzydyna (DMB) jest substancją zaklasyfikowaną do grupy substancji rakotwórczych. W Polsce nie ustalono wartości najwyższego dopuszczalnego stężenia dla tej substancji w powietrzu na stanowiskach pracy. W związku ze stosowaniem DMB w krajowych przedsiębiorstwach zaistniała potrzeba opracowania czułej metody oznaczania 3,3’-dimetylobenzydyny w środowisku pracy. Materiał i metody Metoda oznaczania polega na przepuszczaniu powietrza zawierającego DMB przez filtr z włókna szklanego z naniesionym kwasem siarkowym, wymyciu osadzonej na filtrze substancji wodą i roztworem wodorotlenku sodu, ekstrakcji ciecz–ciecz z toluenem, wymianie rozpuszczalnika na acetonitryl i analizie tak otrzymanego roztworu. Badania wykonano techniką wysokosprawnej chromatografii cieczowej (high-performance liquid chromatography – HPLC) przy zastosowaniu chromatografu cieczowego Agilent Technologies seria 1200 z detektorem diodowym (diode-array detector – DAD) i detektorem fluorescencyjnym (fluorescence detector – FLD). W badaniu wykorzystano kolumnę Ultra C18 o wymiarach: 250×4,6 mm i średnicy ziaren (dp) = 5 μm (Restek). Wyniki Metoda jest liniowa (r = 0,999) w zakresie stężeń wynoszących 1,08–21,6 μg/ml, co odpowiada stężeniom 2–40 μg/m³ dla próbki powietrza o objętości 540 l. Granica wykrywalności oznaczania ilościowego (limit of detection – LOD) wynosi 5,4 ng/ml, a granica oznaczalności (limit of quantification – LOQ) – 16,19 ng/ml. Wnioski Opisana metoda analityczna umożliwia selektywne oznaczenie 3,3’-dimetylobenzydyny w powietrzu na stanowiskach pracy w obecności 1,4-fenylenodiaminy, benzydyny, aniliny, 3,3’-dimetoksybenzydyny, 2-nitrotoluenu, 3,3’-dichlorobenzydyny i azobenzenu. Metoda charakteryzuje się dobrą precyzją i dokładnością oraz spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Med. Pr. 2016;67(1):43–50
Medycyna Pracy
|
2017
|
vol. 68
|
issue 4
497-505
EN
Background Toluenediamines are harmful substances. Toluene-2,4-diamine has been assigned to Carcinogen 1B hazard class, pursuant to Regulation (European Community – EC) No. 1272/2008 of the European Parliament and of the Council, and toluene- 2,6-diamine to Mutagen 2 hazard class. The main routes of exposure to toluene-2,4-diamine and toluene-2,6-diamine are via the respiratory tract and the skin. Toluene-2,4-diamine and toluene-2,6-diamine occur in the work environment in Poland. The aim of this study was to develop and validate a method for the determination of toluene-2,4-diamine and toluene-2,6-diamine that allows the simultaneous determination of their concentrations in the workplace air by personal sampling. Material and Methods Determination of toluene-2,4-diamine and toluene-2,6-diamine derivatives in acetonitrile were carried out by means of liquid chromatography with a diode assay detector. The method involves passing amine-containing air through sulfuric acidtreated glass fiber filter, washing out the substance settled on the filter, using water and solution of sodium hydroxide, followed by the extraction with toluene, reaction with 3,5-dinitobenzoyl chloride, replacement of dissolvent with acetonitrile and analysis of obtained solution. Results The method developed in this study enables the researcher to determine the content of toluene-2,4-diamine and toluene-2,6-diamine in the presence of other hazardous substances. In the specified measuring range (2.88–57.6 μg/ml) calibration curves are linear. Under the optimized conditions of determination, the limit of detection (LOD) values achieved: 51.36 ng/ml for toluene-2,4-diamine and 52.93 ng/ml for toluene-2,6-diamine. Conclusions This method makes it possible to determine the concentration of toluene-2,4-diamine and toluene-2,6-diamine in the workplace air within the specified measuring range of 0.004–0.08 mg/m3 (for air sample volume of 720 l). Med Pr 2017;68(4):497–505
PL
Wstęp Toluenodiaminy są substancjami szkodliwymi. Tolueno-2,4-diamina została sklasyfikowana według rozporządzenia Parlamentu Europejskiego i Rady (Wspólnoty Europejskiej – WE) nr 1272/2008 jako substancja rakotwórcza kategorii 1B, natomiast tolueno-2,6-diamina jako substancja mutagenna kategorii 2. Substancje te wchłaniają się do organizmu człowieka głównie przez układ oddechowy i skórę. Tolueno-2,4-diamina i tolueno-2,6-diamina występują w środowisku pracy w Polsce. Celem badania było opracowanie i walidacja metody oznaczania tolueno-2,4-diaminy i tolueno-2,6-diaminy, która umożliwi jednoczesne oznaczanie stężeń tych substancji w powietrzu na stanowiskach pracy metodą dozymetrii indywidualnej. Materiał i metody W artykule przedstawiono metodę oznaczania tolueno-2,4-diaminy i tolueno-2,6-diaminy w powietrzu na stanowiskach pracy z zastosowaniem wysokosprawnej chromatografii cieczowej (high-pressure liquid chromatography – HPLC) z detektorem diodowym. Metoda polega na: przepuszczeniu badanego powietrza zawierającego tolueno-2,4-diaminę i tolueno-2,6-diaminę przez filtr z włókna szklanego z naniesionym kwasem siarkowym(VI), wymyciu osadzonych na filtrze substancji wodą i roztworem wodorotlenku sodu, przeprowadzeniu ekstrakcji ciecz–ciecz z zastosowaniem toluenu, reakcji z chlorkiem 3,5-dinitrobenzoilu oraz wymiany rozpuszczalnika na acetonitryl. Tak uzyskany rozwór poddano analizie chromatograficznej. Wyniki Metoda umożliwia oznaczanie tolueno-2,4-diaminy i tolueno-2,6-diaminy w obecności innych substancji. W badanym zakresie stężeń (2,88–57,6 μg/ml) uzyskana krzywa wzorcowa jest liniowa. W ustalonych warunkach oznaczania granica wykrywalności (limit of detection – LOD) wynosi: 51,36 ng/ml dla tolueno-2,4-diaminy i 52,93 ng/ml dla tolueno-2,6-diaminy. Wnioski Opracowana metoda umożliwia oznaczanie tolueno-2,4-diaminy i tolueno-2,6-diaminy w powietrzu na stanowiskach pracy w zakresie stężeń 0,004–0,08 mg/m3 dla próbki powietrza 720 l. Med. Pr. 2017;68(4):497–505
EN
The employers responsibilities for the assessment of occupational exposure to cytostatics in the workplace were analyzed in the light of existing legal regulations. Cytostatics may pose a threat to health and life of workers taking care of patients treated oncologically, i.e., pharmacists, physicians, nurses and other personnel. The significant scale of occupational exposure to cytostatics in Poland is confirmed by the data collected in the Central Register of Data on Exposure to Carcinogenic or Mutagenic Substances, Mixtures, Agents or Technological Processes, maintained by the Nofer Institute of Occupational Medicine, Łódź, Poland. The issue of occupational risk assessment of exposure to cytostatics gives raise to numerous concerns. Polish regulations concerning health protection of employees occupationally exposed to cytostatics are not unequivocal, as they are derived from different areas of the law, especially those applying to hazard classification, labeling and preparation of safety data sheets for cytostatics. There are neither binding occupational exposure limits legally set for active compounds of antineoplastic drugs nor methods for monitoring of these substances concentrations in a worker’s breathing zone and biological material. This prevents the employer to carry out the correct assessment of occupational exposure, the results of which are the basis for preparing the proper preventive strategy. In this article the consequences of amendments to the European chemical legislation for employers responsible for adequate protection of health and life of employees exposed to cytostatics, were discussed, as well as some legal changes aimed at a better health and life protection of workers exposed to cytostatics in a workplace were proposed. Med Pr 2018;69(1):77–92
PL
W publikacji przeanalizowano obowiązki pracodawców w zakresie oceny narażenia zawodowego na cytostatyki w miejscu pracy w świetle obowiązujących regulacji prawnych. Leki cytostatyczne mogą stanowić zagrożenie dla zdrowia i życia pracowników sprawujących opiekę nad chorym onkologicznym (tj. farmaceutów, lekarzy, pielęgniarek i pozostałego personelu pomocniczego) oraz pracowników lecznic weterynaryjnych. Dużą skalę narażenia zawodowego na cytostatyki w Polsce potwierdzają dane gromadzone w Centralnym Rejestrze Danych o Narażeniu na Substancje Chemiczne, Ich Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonym przez Instytut Medycyny Pracy im. prof. J. Nofera w Łodzi. Problem oceny ryzyka zawodowego związanego z narażeniem na cytostatyki budzi wiele wątpliwości. Przepisy regulujące w Polsce kwestie ochrony zdrowia pracowników zawodowo narażonych na leki cytostatyczne wywodzą się z różnych obszarów prawa i nie są jednoznaczne ani spójne (szczególnie w kwestii klasyfikacji cytostatyków pod kątem stwarzanych zagrożeń, ich oznakowania i sporządzania dla nich kart charakterystyki). Nie są ustalone prawnie wartości najwyższych dopuszczalnych stężeń substancji czynnych leków przeciwnowotworowych w środowisku pracy oraz brakuje metod ich monitorowania w strefie oddychania pracownika i w materiale biologicznym. Uniemożliwia to przeprowadzanie prawidłowej oceny narażenia zawodowego, której wyniki są podstawą do podejmowania przez pracodawcę odpowiednich działań profilaktycznych. W pracy omówiono skutki nowelizacji prawa europejskiego w obszarze chemikaliów dla pracodawców, którzy odpowiadają za właściwą ochronę zdrowia i życia pracowników zatrudnionych w narażeniu na leki cytostatyczne. Przedstawiono także propozycje zmian w prawie zmierzające do lepszej ochrony pracowników narażonych na oddziaływanie cytostatyków w środowisku pracy. Med. Pr. 2018;69(1):77–92
Medycyna Pracy
|
2016
|
vol. 67
|
issue 5
645-652
EN
Background 1,2:3,4-Diepoxybutane (DEB) is a substance classified to a group of carcinogens. The maximum admissible concentration (MAC) value for this substance in workplace air is not specified in Poland. Due to the fact that DEB has been used in domestic companies there is a need to develop a sensitive method for determining 1,2:3,4-diepoxybutane in the work environment. Material and Methods The studies were performed using gas chromatography (GC) technique. An Agilent Technologies chromatograph, series 7890A, with a mass selective detector (5975C, Agilent Technologies, USA) was employed in the experiment. Separation was performed on a capillary column with Rtx-5MS (30 m × 0.25 mm × 0.25 μm) (Restek, USA). Results The developed method consists in passing the known volume of air through sorbent tube filled with activated carbon, desorpting the DEB vapor with dichloromethane/methanol mixture (95:5, v/v) and analyzing the obtained solution. The method is linear (r = 0.999) within the investigated working range of 0.09–2.06 μg/ml, which is equivalent to air concentrations of 5–114 μg/m³ for a 18 l air sample; limit of detection (LOD) − 9.89 ng/ml and limit of quantification (LOQ) − 29.67 ng/ml. Conclusions The described analytical method enables selective determination of 1,2:3,4-diepoxybutane in the workplace air in the presence of 1,3-butadiene, 1,2-epoxypropane, toluene, styrene and 1,2-epoxy-3-phenoxypropane. The method is characterized by good precision and accuracy and meets the criteria for measurement of chemical agents, listed in PN-EN 482:2012. Med Pr 2016;67(5):645–652
PL
Wstęp 1,2:3,4-Diepoksybutan (DEB) jest substancją zaklasyfikowaną do grupy substancji rakotwórczych. W Polsce nie ustalono wartości najwyższego dopuszczalnego stężenia dla tej substancji w powietrzu na stanowiskach pracy. W związku ze stosowaniem DEB w krajowych przedsiębiorstwach zaistniała potrzeba opracowania czułej metody oznaczania 1,2:3,4-diepoksybutanu w środowisku pracy. Materiał i metody Badania wykonano techniką chromatografii gazowej (gas chromatography – GC) przy zastosowaniu chromatografu gazowego Agilent Technologies 7890A sprzężonego ze spektrometrem mas 5975C (prod. Agilent Technologies, USA) i kolumny kapilarnej Rtx-5MS (30 m × 0,25 mm × 0,25 μm) (prod. Restek, USA). Wyniki Opracowana metoda oznaczania polega na przepuszczeniu znanej objętości badanego powietrza przez rurkę pochłaniającą wypełnioną węglem aktywnym w celu osadzenia na nim par 1,2:3,4-diepoksybutanu, desorpcji pochłoniętego DEB mieszaniną dichlorometanu i metanolu (95:5, v/v) i analizie tak otrzymanego roztworu. Krzywa kalibracji w zakresie stężeń 0,09–2,06 μg/ml jest liniowa (r = 0,999), co odpowiada zakresowi 5–114 μg/m³ dla próbki powietrza o objętości 18 l. Granica wykrywalności (limit of detection – LOD) wynosi 9,89 ng/ml, a granica oznaczalności (limit of quantification – LOQ) – 29,67 ng/ml. Wnioski Opisana metoda analityczna umożliwia selektywne oznaczenie 1,2:3,4-diepoksybutanu w powietrzu na stanowiskach pracy w obecności buta-1,3-dienu, 1,2-epoksypropanu, toluenu, styrenu i 1,2-epoksy-3-fenoksypropanu. Metoda charakteryzuje się dobrą precyzją i dokładnością oraz spełnia wymagania normy PN-EN 482:2012 dla procedur dotyczących oznaczania czynników chemicznych. Med. Pr. 2016;67(5):645–652
Medycyna Pracy
|
2018
|
vol. 69
|
issue 3
291-300
EN
Background Diethyl sulfate (DES) is a substance classified to the group of carcinogens. The value of maximum admissible concentration for this substance in workplace air is not specified in Poland. Due to the use of DES in domestic companies there is a need to develop a sensitive method for the determination of diethyl sulfate in the work environment. Material and Methods Studies were performed using gas chromatography (GC) technique. An Agilent Technologies chromatograph, series 7890A, with a mass selective detector (5975C, Agilent Technologies, USA) was used in the experiment. Separation was performed on a capillary column with Rtx-5MS (30 m × 0.25 mm × 0.25 μm) (Restek, USA). The possibility of using sorbent tubes filled with activated carbon (100 mg/50 mg), silica gel (100 mg/50 mg) and Porapak Q (150 mg/75 mg) for absorption of diethyl sulphate was investigated. Results The method of sampling air containing diethyl sulfate was developed. Among the sorbents to absorb DES Porapak Q was chosen. Determination of the adsorbed vapor includes desorption of DES, using dichloromethane/methanol mixture (95:5, v/v) and chromatographic analysis of so obtained solution. Method is linear (r = 0.999) within the investigated working range of 0.27–5.42 μg/ml, which is an equivalent to air concentrations 0.0075–0.15 mg/m³ for a 36 l air sample. Conclusions The analytical method described in this paper allows for selective determination of diethyl sulfate in the workplace air in the presence of dimethyl sulfate, ethanol, dichloromethane, triethylamine, 2-(diethylamino)ethanol, and triethylenetetramine. The method meets the criteria for performing procedures aimed at measuring chemical agents, listed in EN 482. Med Pr 2018;69(3):291–300
PL
Wstęp Siarczan dietylu (diethyl sulfate – DES) jest substancją zaklasyfikowaną do grupy substancji rakotwórczych. W Polsce nie ustalono wartości najwyższego dopuszczalnego stężenia dla tej substancji w powietrzu na stanowiskach pracy. W związku ze stosowaniem DES w krajowych przedsiębiorstwach zaistniała potrzeba opracowania czułej metody oznaczania siarczanu dietylu w środowisku pracy. Materiał i metody Badania wykonano techniką chromatografii gazowej (gas chromatography – GC) przy zastosowaniu chromatografu gazowego Agilent Technologies 7890A sprzężonego ze spektrometrem mas 5975C (prod. Agilent Technologies, USA). W badaniu wykorzystano kolumnę kapilarną Rtx-5MS (30 m × 0,25 mm × 0,25 μm) (prod. Restek, USA). Przebadano możliwość wykorzystania rurek pochłaniających zawierających: węgiel aktywny (100 mg/50 mg), żel krzemionkowy (100 mg/50 mg) oraz Porapak Q (150 mg/75 mg), do pochłaniania siarczanu dietylu. Wyniki Opracowano metodę pobierania próbek powietrza zawierających siarczan dietylu. Z sorbentów wybrano Porapak Q do pochłaniania par DES. Oznaczanie zaadsorbowanego DES polega na jego desorpcji mieszaniną dichlorometanu i metanolu (95:5, v/v) i analizie chromatograficznej tak otrzymanego roztworu. Krzywa kalibracji w zakresie stężeń 0,27–5,42 μg/ml jest liniowa (r = 0,999), co odpowiada zakresowi 0,0075–0,15 mg/m³ dla próbki powietrza o objętości 36 l. Wnioski Opisana metoda analityczna umożliwia selektywne oznaczenie DES w powietrzu na stanowiskach pracy w obecności siarczanu dimetylu, etanolu, dichlorometanu, trietyloaminy, 2-(dietyloamino)etanolu i N,N'-bis(2-aminoetylo)etylenodiaminy. Metoda spełnia wymagania normy PN-EN 482 dla procedur dotyczących oznaczania czynników chemicznych. Med. Pr. 2018;69(3):291–300
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.