Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  hazard rate function
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We introduce a new generalized family of nonnegative continuous distributions by adding two extra parameters to a lifetime distribution, called the baseline distribution, by twice compounding a power series distribution. The new family, called the lifetime power series-power series family, has a serial arrangement of parallel structures, which extends the Marshall and Olkin structure. Four special models are discussed. A mathematical treatment of the new distributions is provided, including ordinary and incomplete moments, quantile, moment generating and mean residual functions. The maximum likelihood estimation technique is used to estimate the model parameters and a simulation study is conducted to investigate the performance of the maximum likelihood estimates. Its applicability is also illustrated by means of two real data sets.
EN
Modelling lifetime data with simple mathematical representations and an ease in obtaining the parameter estimate of survival models are crucial quests pursued by survival researchers. In this paper, we derived and introduced a one-parameter distribution called the Agu-Eghwerido (AGUE) distribution with its simple mathematical representation. The regression model of the AGUE distribution was also presented. Several basic properties of the new distribution, such as reliability measures, mean residual function, median, moment generating function, skewness, kurtosis, coefficient of variation, and index of dispersion, were derived. The estimation of the proposed distribution parameter was based on the maximum likelihood estimation method. The real-life applications of the distribution were illustrated using two real lifetime negatively and positively skewed data sets. The new distribution provides a better fit than the Pranav, exponential, and Lindley distributions for the data sets. The simulation results showed that the increase in parameter values decreases the mean squared error value. Similarly, the mean estimate tends towards the true parameter value as the sample sizes increase.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.