Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

Search:
in the keywords:  indoor air pollution
help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Objectives: WHO's Children's Environment and Health Action Plan for Europe (CEHAPE) focuses on improvements of indoor environments where children spend most of their time. To investigate the relationship between school indoor air pollutants and cognitive performance in elementary school children, a multidisciplinary study was planned in all-day schools in Austria. Materials and Methods: In a cross-sectional study (LuKi study: Air and Children) indoor air pollutants were monitored in nine elementary all-day schools in urban and rural regions of Austria. In addition, school dust and suspended particulates ($\text{PM}_\text{10}$, $\text{PM}_\text{2.5}$) were measured, focusing on semivolatile compounds (e.g. phthalates, phosphororganic compounds [POC]). Health status and environmental conditions were determined by parents' questionnaire, cognitive function was measured by Standard Progressive Matrices (SPM). Results: Overall, 596 children (6-8 years of age) were eligible for the study. Cognitive tests were performed in 436 children. Analysis showed significant correlations of tris(2-chlorethyl)-phosphate (TCEP) in $\text{PM}_\text{10}$ and $\text{PM}_\text{2.5}$ and school dust samples with cognitive performance. Cognitive performance decreased with increasing concentrations of TCEP. Furthermore, cognitive function decreased significantly with increasing CO₂ levels. Conclusions: POC are widely used as plasticizers, flame retardants and floor sealing. This is the first report of a correlation between TCEP in indoor air samples and impairment of cognitive performance in school children. As a precautionary measure, it is recommended to prohibit the use of toxic chemicals and those suspected of a toxic potential in children's environments such as schools.
EN
Objectives This paper reports on the results of the study aimed at application of ergosterol as an quantitative indicator of fungal bioaerosol present in the indoor air in occupational environment heavily contaminated with organic dust as well as its comparison with the culturable method. Material and Methods The study was conducted in the indoor solid waste sorting plant. Using Andersen impactor adapted to 1 plate at the flow rate of 30 l/min, indoor air was sampled in the workers’ breathing zone. Ergosterol was sampled using gelatinous filter (1000 l of air) and then analyzed by means of the spectrophotometric method. Fungi were sampled on malt extract agar (MEA) medium (3 replications: 2 l, 7.5 l, 15 l of air) and analyzed by means of the culturable method. Based on ergosterol analyzes, concentration of fungi was calculated. Results were given as the range assuming min. as 5.1 pg ergosterol/spore and max as 1.7 pg ergosterol/spore. Results The average concentrations of ergosterol in a working room (arithmetic mean (AM), standard deviation (SD); minimum–maximum (min.–max)) were, respectively: 2.16, 0.72; 0.85–2.92 μg/m³; fungi calculated based on ergosterol – 424.1×10³–1272.4×10³, 140.1×10³– 420.4×10³, 167×10³–1716.5×10³ CFU/m³, and culturable fungi – 13×10³, 9.7×10³, 1.9×10³–34×10³ CFU/m³). It was revealed that concentrations of calculated fungi were even 2 orders of magnitude higher than culturable fungi. Conclusions The quantitative assessment of moldiness by means of ergosterol measurement seems to be a reliable indicator for environments heavily contaminated with organic dust, where viable and non-viable fungi are present in high proportions. Based on that result, more restrictive (as compared to a similar assessment carried out by means of the culturable method) hygienic recommendations, especially those related to the use of preventive measures protecting the employees’ respiratory tract, should have been undertaken.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.