Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Refine search results

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The most commonly used form of regularization typically involves defining the penalty function as a ℓ 1or ℓ2 norm. However, numerous alternative approaches remain untested in practical applications. In this study, we apply ten different penalty functions to predict electricity prices and evaluate their performance under two different model structures and in two distinct electricity markets. The study reveals that LQ and elastic net consistently produce more accurate forecasts compared to other regularization types. In particular, they were the only types of penalty functions that consistently produced more accurate forecasts than the most commonly used LASSO. Furthermore, the results suggest that cross-validation outperforms Bayesian information criteria for parameter optimization, and performs as well as models with ex-post parameter selection.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.