Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 6

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
Medycyna Pracy
|
2021
|
vol. 72
|
issue 2
131-143
EN
Background: This work presents intentional use of harmful biological agents based on the National Register of Biological Agents (in Polish abbreviated as KRCB) as of July 2020. Material and Methods: Generally, KRCB is a central database gathering notifications of intentional use of biological agents classified as risk groups 2–4 at work. Results: Notifications were sent by 672 enterprises, including for diagnostic – 63%, research – 30% and industrial purposes – 7%. The largest number of notifications were sent by hospital-based diagnostic laboratories – 34%, laboratories other than hospital-based – 34%, and higher education and research units – 15%. In total, 7077 workers (88% women, 12% men) were exposed to biological agents intentionally used at work. The following bacteria were most frequently used: Escherichia coli (with the exception of non-pathogenic strains) – 4394 (62%) exposed workers, Staphylococcus aureus –4122 (58%), and Pseudomonas aeruginosa – 3726 (53%). Biological agents recognized by the International Agency for Research on Cancer as carcinogenic were used in 107 enterprises (16%), including the following viruses: hepatitis B virus (HBV) – 25 enterprises (4%), hepatitis C virus (HCV) – 24 (4%), human immunodeficiency virus type 1 (HIV-1) – 18 (3%), Epstein-Barr virus (EBV) – 10 (1%), human papilloma virus (HPV) – 5 (1%), human herpes virus type 8 (HHV-8) – 3 (<1%), human T-lymphotropic virus type 1 (HTLV-1) – 3 (<1%), as well as bacteria Helicobacter pylori – 18 (3%) and parasites Schistosoma haematobium – 1 (<1%). Conclusions: While KRCB is a unique source of information on biological agents intentionally used in workplaces, it also provides an important link in the chain of information on occupational exposure to harmful agents in Poland.
PL
Wstęp: W artykule przedstawiono zamierzone użycie szkodliwych czynników biologicznych na podstawie Krajowego Rejestru Czynników Biologicznych (KRCB) według stanu na lipiec 2020 r. Materiał i metody: Krajowy Rejestr Czynników Biologicznych jest centralną bazą danych gromadzącą zgłoszenia celowego użycia w procesach pracy czynników biologicznych zaklasyfikowanych do grup zagrożenia 2–4. Wyniki: Zgłoszenia zamierzonego użycia czynników biologicznych otrzymano od 672 zakładów, w tym od 63% w celach diagnostycznych, 30% – naukowo-badawczych i 7% – przemysłowych. Najwięcej zgłoszeń przesłały kliniczno-diagnostyczne laboratoria przyszpitalne (34%), a następnie laboratoria diagnostyczne inne niż przyszpitalne (34%) oraz laboratoria działające w strukturach szkół wyższych i jednostek naukowo-badawczych (15%). Ogółem liczba narażonych pracowników wyniosła 7077 osób, w tym 88% kobiet i 12% mężczyzn. Czynniki z 2 i 3 grupy zagrożenia stosowało, odpowiednio, 98% i 16% zakładów. Najczęściej wykorzystywano bakterie Escherichia coli (z wyjątkiem szczepów niepatogennych), na które były narażone 4394 osoby (62%), Staphylococcus aureus – 4122 osoby (58%) i Pseudomonas aeruginosa, na które było narażonych 3726 osób (53%). Czynniki biologiczne uznane przez Międzynarodową Agencję Badań nad Nowotworami za rakotwórcze stosowano w 107 zakładach (16%), w tym wirusy [wirus zapalenia wątroby typu B (N = 25, 4%), wirus zapalenia wątroby typu C (N = 24, 4%), ludzki wirus nabytego niedoboru odporności typu 1 (N = 18, 3%), wirus Epsteina-Barr (N = 10, 1%), ludzkie wirusy papilloma (N = 5, 1%), ludzki wirus herpes typu 8 (N = 3, <1%), ludzki wirus limfotropowy komórek T typu 1 (N = 3, <1%)], bakterie [Helicobacter pylori (N = 18, 3%)] i pasożyt [Schistosoma haematobium (N = 1, <1%)]. Wnioski: Krajowy Rejestr Czynników Biologicznych jest unikatowym źródłem informacji o czynnikach biologicznych celowo stosowanych w zakładach pracy i stanowi ważne ogniwo w łańcuchu informacji o narażeniu zawodowym w Polsce. Med. Pr. 2021;72(2):131–143
Medycyna Pracy
|
2020
|
vol. 71
|
issue 3
265-278
EN
BackgroundThe aim of the study was to assess the occupational exposure to Staphylococcus aureus bacteria, including methicillin- resistant S. aureus (MRSA) and other antibiotic-resistant strains in the municipal wastewater treatment plants (WWTPs) environment.Material and MethodsIn 16 WWTPs in Poland, 33 wastewater and 253 air samples were collected in the spring–summer season. The microbiological analysis was carried out using a chromogenic medium. Species identification was carried out using the matrix assisted laser desorption ionization time-of-flight method, while the antibiotic-resistance analysis was performed with an automatic method.ResultsAmong 2805 bacterial isolates from the air and wastewater, 574 were identified as S. aureus species (20.5%). The presence of S. aureus species was found in 11 WWTPs (69%), among them in 11 WWTPs in raw wastewater and in 1 WWTP additionally in treated wastewater. The concentrations of S. aureus in wastewater ranged 2–1215 colony-forming units per milliliter (CFU/ml). In the air, 2 S. aureus isolates were identified in concentrations of 5 and 10 CFU/m3; both samples were collected at the stage of mechanical wastewater treatment. The results revealed the following trend: the higher the outdoor temperature, the bigger the number of WWTPs with confirmed S. aureus presence. Among 149 S. aureus isolates (2 from the air and 147 from wastewater, including 2 MRSA), 100 isolates were resistant only to penicillin, while 34 isolates showed multi-antibiotic resistance (to penicillin and other drugs). It was found that isolated bacteria were resistant almost strictly to critical and highly important antibiotics in veterinary medicine.ConclusionsIn general, WWTPs workers are occupationally exposed to S. aureus, including MRSA, and other antibiotic- and multi-antibiotic-resistant strains. The highest risk of infection concerns the activities carried out in direct contact with wastewater or devices through which wastewater flows, particularly at the stage of mechanical treatment. A significant source of S. aureus seems to be intensive livestock farming located in the area of the WWTPs under analysis. The study confirms the necessity to disinfect the wastewater discharging into WWTPs.
EN
This review is aimed at summarizing the current state of knowledge about the relationship between environmental exposure to the bioaerosol emitted by intensive livestock farming and changes in the microbiome of people living in livestock farm vicinity. The PubMed, Scopus and Web of Science databases were searched by crossing keywords from the following 3 groups: a) “livestock,” “animal farms,” “animal breeding”; b) “microbiome,” “resistome”; c) “livestock vicinity,” “farm vicinity,” “neighborhoods and health” in 2010–2022. Literature screening did not reveal any paper related to the full microbiome composition in the population studied. In the study, the authors included 7 papers (5 from the Netherlands, 1 from the USA, and 1 from China). The studies confirmed the carriage of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), livestock-associated MRSA (LA-MRSA MC398) and multidrug-resistant S. aureus (MDRSA) in the nasal microbiome of adults and children living within 500–2000 m from a livestock farm. Clostridium difficile, including LA-ribotype RT078 carriage, was detected in the intestinal microbiome of adults living within 500–1000 m. Extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae were confirmed in the intestinal microbiome of adults living within 500–6200 m. Knowledge on the composition of the microflora of people living in livestock farm vicinity is insufficient to conclude about changes in the microbiome caused by the environmental emission of bioaerosol. The carriage prevalence of the LA-bacteria, including both strains with antimicrobial resistance and antimicrobial resistance genes, confirms the presence of zoonotic bacteria in the human microflora in populations without occupational contact with animals. It cannot be ruled out that zoonotic bacteria, as a component of the microbiome, have a negative impact on people’s health.
EN
Objectives This paper reports on the results of the study aimed at application of ergosterol as an quantitative indicator of fungal bioaerosol present in the indoor air in occupational environment heavily contaminated with organic dust as well as its comparison with the culturable method. Material and Methods The study was conducted in the indoor solid waste sorting plant. Using Andersen impactor adapted to 1 plate at the flow rate of 30 l/min, indoor air was sampled in the workers’ breathing zone. Ergosterol was sampled using gelatinous filter (1000 l of air) and then analyzed by means of the spectrophotometric method. Fungi were sampled on malt extract agar (MEA) medium (3 replications: 2 l, 7.5 l, 15 l of air) and analyzed by means of the culturable method. Based on ergosterol analyzes, concentration of fungi was calculated. Results were given as the range assuming min. as 5.1 pg ergosterol/spore and max as 1.7 pg ergosterol/spore. Results The average concentrations of ergosterol in a working room (arithmetic mean (AM), standard deviation (SD); minimum–maximum (min.–max)) were, respectively: 2.16, 0.72; 0.85–2.92 μg/m³; fungi calculated based on ergosterol – 424.1×10³–1272.4×10³, 140.1×10³– 420.4×10³, 167×10³–1716.5×10³ CFU/m³, and culturable fungi – 13×10³, 9.7×10³, 1.9×10³–34×10³ CFU/m³). It was revealed that concentrations of calculated fungi were even 2 orders of magnitude higher than culturable fungi. Conclusions The quantitative assessment of moldiness by means of ergosterol measurement seems to be a reliable indicator for environments heavily contaminated with organic dust, where viable and non-viable fungi are present in high proportions. Based on that result, more restrictive (as compared to a similar assessment carried out by means of the culturable method) hygienic recommendations, especially those related to the use of preventive measures protecting the employees’ respiratory tract, should have been undertaken.
EN
Introduction: The study aimed at determination of the usefulness of the subjective assessment of selected signs of fungi growth in flats and microclimate parameters to indicate the actual air contamination with culturable fungi, (1→3)-β-D-glucans and fungal spores. Material and methods: This analysis covered 22 flats, the inhabitants of which declared in a questionnaire interview the presence of the developed mycelium on solid surfaces in the flat. Air samples for determination of the culturable fungi, (1→3)-β-D-glucans and (viable and non-viable) fungal spores concentrations indoor and outdoor the flats during the heating period were collected. During bioaerosol sampling microclimate parameters were measured. Predictive models for concentrations of the tested biological agents with regard to various ways to assess fungal contamination of air in a flat (on the basis of a questionnaire or a questionnaire and microclimate measurements) were built. Results: The arithmetic means of temperature, relative humidity, CO₂ concentration and air flow velocity in the flats were respectively: 20.5°C, 53%, 1431.6 ppm and 0 m/s. The geometric mean concentrations of airborne fungi, (1→3)-β-D-glucans and fungal spores in these premises amounted to 2.9×10² cfu/m³, 1.6 ng/m³ and 5.7×10³ spores/m³, respectively. The subjective assessment of fungi growth signs and microclimate characteristics were moderately useful for evaluation of the actual airborne fungi and (1→3)-β-D-glucan concentrations (maximum percent of explained variance (VE) = 61% and 67%, respectively), and less useful in evaluation of the actual fungal spore concentrations (VE < 29%). In the case of fungi, higher usefulness was indicated of the questionnaire evaluation supported by microclimate measurements (VE = 61.2%), as compared to the evaluation only by means of a questionnaire (VE = 46.9%). Conclusions: Subjective evaluation of fungi growth signs in flats, separately or combined with microclimate measurements, appeared to be moderately useful for quantitative evaluation of the actual air contamination with fungi and their derivatives, but more extensive studies are needed to strengthen those findings.
EN
Objectives The main objective was analysis and assessment of toxinogenic capabilities of fungi isolated from moldy surfaces in residential rooms in an urban agglomeration situated far from flooded areas in moderate climate zone. Material and Methods The assessment of environmental exposure to mycotoxins was carried out in samples collected from moldy surfaces in form of scrapings and airborne dust from 22 moldy dwellings in winter season. In each sample 2 mycotoxins were analyzed: sterigmatocystin and roquefortine C produced by Aspergillus versicolor and Penicillium chrysogenum, respectively. Mycotoxins were analyzed by high-performance liquid chromatography (HPLC) in: scrapings from moldy surfaces, mixture of all species of fungi cultured from scrapings on microbiological medium (malt extract agar), pure cultures of Aspergillus versicolor and Penicillium chrysogenum cultured from scrapings on microbiological medium; mycotoxins in the indoor air dust were also analyzed. Results The production of sterigmatocystin by individual strains of Aspergillus versicolor cultured on medium was confirmed for 8 of 13 isolated strains ranging 2.1–235.9 μg/g and production of roquefortine C by Penicillium chrysogenum for 4 of 10 strains ranging 12.9–27.6 μg/g. In 11 of 13 samples of the mixture of fungi cultured from scrapings, in which Aspergillus versicolor was found, sterigmatocystin production was at the level of 3.1–1683.2 μg/g, whereas in 3 of 10 samples in which Penicillium chrysogenum occurred, the production of roquefortine C was 0.9–618.9 μg/g. The analysis did not show in any of the tested air dust and scrapings samples the presence of analyzed mycotoxins in the amount exceeding the determination limit. Conclusions The capability of synthesis of sterigmatocystin by Aspergillus versicolor and roquefortine C by Penicillium chrysogenum growing in mixtures of fungi from scrapings and pure cultures in laboratory conditions was confirmed. The absence of mycotoxins in scrapings and air dust samples indicates an insignificant inhalatory exposure to mycotoxins among inhabitants in moldy flats of urban agglomeration situated far from flooded territories. Int J Occup Med Environ Health 2016;29(5):823–836
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.