Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 3

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Objectives: Octabromodiphenyl ether (OctaBDE) was used as a flame retardant applied mostly in the manufacture of plastics utilized in the electrical and electronic industries. Owing to its long half-life and being regarded as an environmental pollutant, OctaBDE, like other polybrominated diphenyl ethers, has been classified as a persistent organic pollutant (POP). This study was carried out to assess the effects of oxidative stress (redox homeostasis) induced in rats by OctaBDE. Material and Methods: Female Wistar rats exposed intragastrically to OctaBDE at single (25, 200 or 2000 mg/kg b.w.), or repeated (0.4, 2, 8, 40 or 200 mg/kg/day) doses during 7–28 days were used in the experiment. Selected oxidative stress parameters were determined in the liver and blood serum. Results: Administration (single or repeated) of OctaBDE to rats resulted in the impaired redox homeostasis, as evidenced by the increased levels of reduced (GSH) and oxidized (GSSG) glutathione in the liver, the reduced total antioxidant status (TAS) in serum and the increased concentration of malondialdehyde (MDA) in the liver. After multiple doses of OctaBDE, elevated activity of glutathione transferase (GST) in the liver was also noted. Conclusions: After repeated administration of OctaBDE at the lowest dose (0.4 mg/kg/day), changes were observed in the parameters (MDA, TAS, GSSG) indicative of oxidative stress.
EN
Objectives: The aim of this study was to assess the exposure of patients to organic substances produced and identified in surgical smoke formed in the abdominal cavity during laparoscopic cholecystectomy. Material and Methods: Identification of these substances in surgical smoke was performed by the use of gas chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM). The selected biomarkers of exposure to surgical smoke included benzene, toluene, ethylbenzene and xylene. Their concentrations in the urine samples collected from each patient before and after the surgery were determined by SPME-GC/MS. Results: Qualitative analysis of the smoke produced during laparoscopic procedures revealed the presence of a wide variety of potentially toxic chemicals such as benzene, toluene, xylene, dioxins and other substances. The average concentrations of benzene and toluene in the urine of the patients who underwent laparoscopic cholecystectomy, in contrast to the other determined compounds, were significantly higher after the surgery than before it, which indicates that they were absorbed. Conclusions: The source of the compounds produced in the abdominal cavity during the surgery is tissue pyrolysis in the presence of carbon dioxide atmosphere. All patients undergoing laparoscopic procedures are at risk of absorbing and excreting smoke by-products. Exposure of the patient to emerging chemical compounds is usually a one-time and short-term incident, yet concentrations of benzene and toluene found in the urine were significantly higher after the surgery than before it.
EN
Objectives During laparoscopic cholecystectomy, the removal of the gall bladder, pyrolysis occurs in the peritoneal cavity. Chemical substances which are formed during this process escape into the operating room through trocars in the form of surgical smoke. The aim of this study was to identify and quantitatively measure a number of selected chemical substances found in surgical smoke and to assess the risk they carry to medical personnel. Material and Methods The study was performed at the Maria Skłodowska-Curie Memorial Provincial Specialist Hospital in Zgierz between 2011 and 2013. Air samples were collected in the operating room during laparoscopic cholecystectomy. Results A complete qualitative and quantitative analysis of the air samples showed a number of chemical substances present, such as aldehydes, benzene, toluene, ethylbenzene, xylene, ozone, dioxins and others. Conclusions The concentrations of these substances were much lower than the hygienic standards allowed by the European Union Maximum Acceptable Concentration (MAC). The calculated risk of developing cancer as a result of exposure to surgical smoke during laparoscopic cholecystectomy is negligible. Yet it should be kept in mind that repeated exposure to a cocktail of these substances increases the possibility of developing adverse effects. Many of these compounds are toxic, and may possibly be carcinogenic, mutagenic or genotoxic. Therefore, it is necessary to remove surgical smoke from the operating room in order to protect medical personnel.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.