Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 1

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The operation of turbogenerators of nuclear and thermal power plants is accompanied by the release of heat, which contributes to the heating of generator components and can lead to an emergency situation (fire). Since As turbogenerators operate for long periods of time, the process of continuous cooling of generator equipment plays an important role, as its overheating can lead to emergency chain reactions, fires, explosions, etc. Analysis of statistical data on the occurrence of emergency situations (fires) related to hydrogen leaks from process equipment indicates insufficient operational qualifications of operational personnel, poor quality of equipment repair, errors of repair personnel and their violation of technical requirements for repairing equipment and their systems, design defects in equipment and systems that ensure its operation. It has been established that the causes of emergency situations are: hydrogen leakage due to leaks in equipment, spontaneous ignition of hydrogen, the presence of air space in turbogenerator equipment, violation of technological regulations, contamination of hydrogen with moisture and pollution, unhermetization of the generator body. Modeling of the hydrogen combustion process during its release from the casing of a turbine-generator was carried out using the example of a power plant engine room. The study showed that the longest hydrogen combustion time will occur when hydrogen is released through holes with geometric size d0 in the range of 0.05--0.1 m (50--100 mm). At larger values of the geometric size of the hole d0 > 0.1 m, the hydrogen burning time is insignificant, and at values of d0 < 0.005 m, the length of the flame burner L does not exceed 1.15 m. The results of the study confirm that hydrogen flame torch combustion can occur as a result of turbogenerator failure. The calculations established the need for fire protection of the supporting metal structures of the engine room to ensure a fire resistance limit of at least 45 minutes under the hydrocarbon curve.
PL
Działanie turbogeneratorów elektrowni jądrowych i cieplnych towarzyszy wydzielanie ciepła, które przyczynia się do nagrzania części składowych generatora i może doprowadzić do sytuacji awaryjnej (pożar). W związku z tym, że turbogeneratory pracują długo, ważną rolę odgrywa proces ciągłego chłodzenia urządzeń generatora, ponieważ jego przegrzanie może prowadzić do awaryjnych reakcji łańcuchowych, pożarów, eksplozji itp. Analiza danych statystycznych dotyczących występowania sytuacji awaryjnych (pożarów) związanych z wyciekami wodoru z urządzeń technologicznych wskazuje na niewystarczające kwalifikacje operacyjnego personelu operacyjnego, niską jakość naprawy sprzętu, błędy personelu naprawczego i naruszenie przez niego wymagań technicznych dotyczących naprawy sprzętu i ich systemów, wady konstrukcyjne urządzeń i systemów zapewniających jego działanie. Ustalono, że przyczynami sytuacji awaryjnych są: wyciek wodoru na skutek nieszczelności urządzeń, samozapłon wodoru, obecność przestrzeni powietrznej w wyposażeniu turbogeneratora, naruszenie przepisów technologicznych, zanieczyszczenie wodoru wilgocią i zanieczyszczenia, rozhermetyzowanie korpusu generatora. Modelowanie procesu spalania wodoru podczas jego uwalniania z obudowy turbogeneratora przeprowadzono na przykładzie maszynowni elektrowni. Badania wykazały, że najdłuższy czas spalania wodoru nastąpi przy jego wypływaniu przez otwory o wielkości geometrycznej d0 z zakresu 0,05–0,1 m (50–100 mm). Przy większych wartościach wielkości geometrycznej otworu d0 > 0,1 m czas spalania wodoru jest nieznaczny, a przy wartościach d0 < 0,005 m długość palnika płomieniowego L nie przekracza 1,15 m. Wyniki przeprowadzonych badań potwierdzają, że w wyniku uszkodzenia turbogeneratora może nastąpić spalenie wodoru w postaci płomienia pochodni. W obliczeniach ustalono potrzebę ochrony przeciwpożarowej nośnych konstrukcji metalowych maszynowni, aby zapewnić granicę odporności ogniowej co najmniej 45 minut pod krzywą węglowodorów.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.