Breast cancer is the most common malignancy in women. Over several decades of research, it has been determined which individual characteristics or exposure increase the likelihood of developing breast cancer. The co-occurrence of several factors is associated with a higher risk of developing this cancer. The ability to identify women whose accumulation of unfavorable factors causes a high risk of developing breast cancer is important for prevention, screening tests and also for medical doctors providing preventive care. For this purpose, many risk prediction models (risk calculators) have been developed. The aim of the manuscript was to discuss the most frequently used breast cancer risk calculators, paying particular attention to information about the risk factors they take into account, the method of interpreting the obtained results, the populations in which they are used and data from validation studies.
PL
Rak piersi jest najczęstszym nowotworem złośliwym u kobiet. W ciągu kilkudziesięciu lat badań ustalono, jakie cechy osobnicze lub narażenia zwiększają prawdopodobieństwo zachorowania na ten nowotwór. Współwystępowanie kilku czynników jest związane z większym ryzykiem. Możliwość identyfikacji kobiet, u których kumulacja niekorzystnych czynników powoduje wysokie ryzyko zachorowania na raka piersi, ma istotne znaczenie dla profilaktyki i badań przesiewowych, a także dla lekarzy sprawujących opiekę profilaktyczną. W tym celu opracowano wiele modeli predykcyjnych ryzyka (kalkulatorów ryzyka). Celem pracy było omówienie najczęściej stosowanych kalkulatorów ryzyka zachorowania na raka piersi ze zwróceniem szczególnej uwagi na informacje o uwzględnianych w nich czynnikach ryzyka, sposobie interpretacji uzyskanych wyników, populacjach, w których znajdują zastosowanie, i danych z badań walidacyjnych.
The aim of the article was the assessment of the spatial matching of existing shelters (supply) to the distribution of residents in Suwałki (demand), considering their declared transport behaviours while evacuating during war. The analysis was conducted based on the locations of existing emergency shelters using data on population distribution (registration data with building accuracy). Spatial alignment was determined using the P-Median problem and E2SFCA. In terms of establishing vehicular or pedestrian travel time, the Manhattan metric based on the urban road network model was utilised. A model of vehicle movement speed was then constructed, while a constant speed was assumed for pedestrian movement. Additionally, survey data on the transport behaviour of inhabitants of Suwałki in the case of war were conducted in 2023. The study concluded that the population residing within the city limits should evacuate on foot, and that prior training on the evacuation process is especially necessary for those who reside in less populated areas of the city. The analyses also showed that existing emergency shelters are overly dispersed, making management difficult for emergency services. Since the current capacity of emergency shelters is not sufficient for the number and distribution of inhabitants of Suwałki, the most practical significance of this article in this respect is to indicate to the authorities the optimal number and location for emergency shelters (to improve the evacuation process).
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.