PL EN


2012 | 8 | 25-42
Article title

Efekt kalendarza wypłat z bankomatów sieci Euronet

Title variants
EN
Calendar Effect of Withdrawals from ATM "Euronet" Network
Languages of publication
PL
Abstracts
PL
Możliwość przewidywania zapotrzebowania na gotówkę pozwala na określenie stopnia ryzyka i przyjęcie odpowiedniej strategii napełniania bankomatów gotówką. Te przewidywania muszą uwzględniać nie tylko zachowania i przyzwyczajenia klientów w przeszłości, ale także aktualną liczbę i strukturę wieku ludności na danym terenie, na którym są zainstalowane bankomaty. W modelach powinny być brane pod uwagę nie tylko składniki systematyczne, ale także czynniki stochastyczne, gdyż wypłaty z bankomatów tworzą szeregi czasowe. Wykazują one w szczególności tak zwany "efekt kalendarza", to znaczy ich wartości mogą zależeć od pory roku, miesiąca, dnia tygodnia, pory dnia itd. Identyfikacja efektu kalendarza ma duże znaczenie dla ustalenia strategii i zasad napełniania bankomatów gotówką. Ten artykuł jest poświęcony zagadnieniu efektu kalendarza. W dalszej jego części w rozdziale 1 dokonano przeglądu literatury dotyczącej efektu kalendarza i problemów związanych z obsługą sieci bankomatowych. W rozdziale 2 scharakteryzowano dane wraz z podaniem podstawowych statystyk opisowych, w szczególności dla poszczególnych rodzajów lokalizacji. W następnych rozdziałach zaprezentowano i omówiono wyniki badania efektu kalendarza. Podsumowanie badań zostało zamieszczone w ostatnim rozdziale.(fragment tekstu)
EN
This paper analyses the calendar effects present in Automated Teller Machines (ATM) withdrawals, using daily data for Euronet network for the period from January 2008 to March 2012. The main topic of this paper concentrates on the identification of specific calendar effects in ATM cash withdrawal series of Euronet company in Polish provinces Małopolska and Podkarpackie. From the analysis, it follows that withdrawals differ essentially according to the day of the week. Fridays is the day in which the largest amounts are withdrawn and Saturdays and Sundays the days with the lowest amounts of withdrawals. Over the month, cash withdrawals are more often in the second and in the last weeks of the month. This can be related with the profile of wage payments. In Poland wages are paid at the beginning of the month in the case of the public sector and just at the end of the month in the private sector. Concerning seasonality, a strong profile is also observable. In particular July, August and December are the month in which the largest amounts of withdrawals are noticed. They are surely related with the summer holidays and the Christmas season. The presented results may allow for a better understanding of consumer habits and for adjusting the original series for calendar effects. (original abstract)
Year
Issue
8
Pages
25-42
Physical description
Contributors
  • Akademia Górniczo-Hutnicza w Krakowie, student
author
References
  • Bell W.R., Hillmer S.C., Modeling Time Series with Calendar Variation, Journal of the American Statistical Association/78, 1983, s. 526 - 534.
  • Carlsen M., Storgaard P.E., Dankort payments as a timely indicator of retail sales in Denmark,Danmarks Nationalbank Working Papers, No. 66, 2010.
  • Cleveland W.S., Devlin S.J., Calendar Effects in Monthly Time Series: Detection by Spectrum Analysis and Graphical Methods, Journal of the American Statistical Association, 371, 75, 1980, s. 487-496.
  • Cleveland W.P., Grupe M.R., Modeling time series when calendar effects are present, Applied Time Series Analysis of Economic Data, Zellner, A. (editor), U.S. Department of Commerce, U.S. Bureau of the Census, Washington D.C., 1983, s. 57-67.
  • Esteves P.S., Are ATM/POSData Relevant When Now casting Private Consumption?, Banco de Portugal Working Paper, 25, 2009.
  • Findley D.F., Monsell B.C., Modeling Stock Trading Day Effects Under Flow Day-of-Week Effect Constraints, Journal of Official Statistics, Vol. 25(3),2009, s. 415-430.
  • Findley D.F., Monsell B.C., Bell W.R., Otto M.C., Chen B.C., New capabilities and Methods of the X-12-ARIMA seasonal adjustment program, Journal of Business and Economic Statistics, vol. 16(2), 1998, s. 127-77.
  • Findley D.F., Soukup R.J., On the Spectrum Diagnostics Used byX-12-ARIMA to Indicate the Presence of Trading Day Effects after Modeling or Adjustment, Proceedings of the American Statistical Association, Business and Statistics Section, 1999, s.144-49.
  • Findley D.F., Soukup R.J., Modeling and Model Selection for Moving Holidays, Proceedings of the American Statistical Association, Business and Economics Statistics Section, 2000, s. 102-07.
  • Findley D.F., Soukup R.J., Detection and Modeling of Trading Day Effects, in ICES II: Proceedings of the Second International Conference on Economic Surveys, 2001, s. 743-53.
  • Galbraith J.W., Tkacz G., Electronic Transactions as High- Frequency Indicators of Economic Activity, Bank of Canada Working Paper, 2007-58.
  • Gerdes G.R., Walton J.K., Liu M.X, Parke D.W., Trends in the Use of Payment Instruments in the United States, Federal Reserve Bulletin 91 (Spring), 2005, s.180-201.
  • Hansen P.R., Lunde A., Nason J.M., Testing the Significance of Calendar Effects, Working Paper 2005-2, Federal Reserve Bank of Atlanta, 2005.
  • Kufel T., Ekonometryczna analiza cyklicznościprocesów gospodarczych o wysokiej częstotliwości obserwowania, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń, 2010.
  • Liu L.M., Analysis of Time Series with Calendar Effects, Management Science 26, 1980, s. 106-112.
  • McElroy T.S., Holland S., A Nonparametric Test for Assessing Spectral Peaks, Research Report 2005-10, Statistical Research Division, U.S. Bureau of the Census, Washington D.C., 2005.
  • Rodrigues P., Esteves P., Ca/endar effects in dai/y ATM withdrawa/s, Economics Bulletin, Vol. 30 no.4, 2010, s. 2587-2597.
  • Schmitz S., Wood G., Institutiona/ Change in the Payments System and Monetary Po/icy, Routledge London, 2006.
  • Simutis R., Dilijonas D., Bastina L., Cash demand forecasting for ATM using Neura/ Networks and support vector regression a/gorithms, 20th International Conference, EURO Mini Conference, "Continuous Optimization and Knowledge-Based Technologies" (EurOPT- 2008), Selected Papers, Vilnius May 20-23, 2008, s. 416-421.
  • Snellman H.,Viren M., ATM networks and cash usage, Applied Financial Economics, 19(10), 2009, s. 841 -851.
  • Takala K.,Viren M., Impact of ATMs on the Use of Cash, Communications and Strategies, No 66,2007, s. 47-61.
  • Young A.H., Estimating Trading-day Variation in Month/y Economic Time Series, Technical Paper 12, Bureau of the Census, 1965.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.desklight-5d1b770a-2d3b-4764-8b71-c228c19dacf0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.