PL EN


2019 | 2/2019 (82) | 205-217
Article title

Integrated Simulation and Regression Framework for Delivery Management in E-commerce

Content
Title variants
PL
Wykorzystanie połączenia symulacji i regresji dla problemu zarządzania dostawami w sektorze e-commerce
Languages of publication
EN PL
Abstracts
EN
Problems with commodities and the delivery of products have accompanied trade since its beginnings. It is not possible to stock up, as there will always be limitations – of storage space, resources or financial resources. The e-commerce sector in the age of Industry 4.0 era faces its own specific problems: on the one hand, customers want customised products fast, on the other hand, shops have to lower storage costs and efficiently manage the supply chain. The paper proposes a framework of simulation modelling with a regression module for shops operating in the e-commerce sector; it is a tool for decision-makers that simulates the ordering and delivering process with a varying number of products, suppliers and a varying demand. The aim is to define a novel approach where computer simulation and regression models are integrated and combined in order to provide decision-makers with information about the average delivery time to customers ordering online products and possible delays. The results of analyses show 90% reliability of the regression model in terms of changes in the average delivery time depending on number of products sold by the shop, demand fluctuation, the number of distributors and the average delivery time of products from the distributor.
PL
Problemy z zapasami i dostawą produktów towarzyszyły handlowi od początku jego istnienia. Nie jest możliwe utrzymanie cały czas wysokiego stanu zapasów, ponieważ zawsze będą istniały ograniczenia – powierzchni magazynowej, zasobów materialnych lub zasobów finansowych. Sektor e-commerce w dobie Przemysłu 4.0 boryka się z własnymi specyficznymi problemami: z jednej strony klienci chcą szybko dostać dostosowane do swoich potrzeb produkty, z drugiej zaś – sklepy muszą obniżyć koszty magazynowania i efektywnie zarządzać łańcuchem dostaw. W artykule proponuje się połączenie modelowania symulacyjnego z modułem regresji dla sklepów działających w sektorze handlu elektronicznego; jest to narzędzie dla decydentów, które symuluje proces zamawiania i dostarczania dla różnej liczby produktów, dostawców i zróżnicowanego popytu. Celem artykułu jest zdefiniowanie nowego podejścia, w którym symulacja komputerowa i modele regresji są zintegrowane i połączone w celu dostarczenia decydentom informacji o średnim czasie dostawy i ewentualnych opóźnieniach do klientów zamawiających produkty online. Wyniki analiz modelu regresji pokazują iż 90% zmian średniego czasu dostawy zależy od liczby produktów sprzedawanych przez sklep, wahań popytu, liczby dystrybutorów oraz średniego czasu dostawy produktów od dystrybutora.
Year
Issue
Pages
205-217
Physical description
Dates
issued
2019-05-06
Contributors
  • University of Szczecin, Faculty of Management and Economics of Services, Department of Quantitative Methods
References
  • 1. Benkachcha, S., Benhra. J., & El Hassani, H. (2014). Demand Forecasting in Supply Chain: Comparing Multiple Linear Regression and Artificial Neural NetworksApproaches. International Review on Modelling and Simulations, 7(2), 279–286.
  • 2. Berger S.LT., Tortorella G.L., & Frazzon E.A. (2018). Simulation-based analysis of inventory strategies in lean supply chains. IFAC PapersOnLine, 51(11), 1453–1458. https://doi.org/10.1016/j.ifacol.2018.08.310.
  • 3. Christiansen, P.E., Kotzab, H., & Mikkola, J.H. (2007). Coordination and sharing logistics in leagile supply chains. International Journal of Procurement Management, 1(1/2), 79–96. https://doi.org/10.1504/IJPM.2007.015356.
  • 4. Ding, H., Benyoucef, L., Xie, X., Hans, C., and Schumacher, J. (2004). “One” A New Tool for Supply Chain Network Optimization And Simulation. Proceedings of the 36th conference on Winter simulation, 2, 1404–1411. https://doi.org/10.1109/WSC.2004.1371479.
  • 5. Duong, L.N.K., Wood, L.C., & Wang, W.Y.C. (2015). A Multi-Criteria Inventory Management System for Perishable & Substitutable Products. Procedia Manufacturing,2, 66–76. https://doi.org/10.1016/j.promfg.2015.07.012.
  • 6. International Postal Corporation. (2014). Strategic Perspectives on the Postal Market. Retrieved from: https://www.ipc.be/~/media/documents/public/markets/strategicperspectives-2014.pdf.
  • 7. Metapack. (2015). State of eCommerce Delivery 2015. Retrieved from: http://www.metapack.com/wp-content/uploads/2016/10/State_eCommerce_Delivery.pdf.
  • 8. Kadłubek, M. (2015). The Selected Areas of E-logistics in Polish E-commerce. Procedia Computer Science, 65, 1059–1065. https://doi.org/10.1016/j.procs.2015.09.052.
  • 9. Kristianto, N.Y. (2011). Production ramp up in built-to-order supplier chain. Journal of Modelling in Management, 6(2), 143–163. https://doi.org/10.1108/17465661111149557.
  • 10. Mentzer, J.T. Myers, M.B., & Stank, T.P. (2007). Handbook of global supply chain management. Thousand Oaks: Sage Publications.
  • 11. Morganti, E., Dablanc, L., &Fortin, F. (2014). Final deliveries for online shopping: The deployment of pickup point networks in urban and suburban areas. Research in Transportation Business & Management, 11, 23–31. https://doi.org/10.1016/j.rtbm.2014.03.002.
  • 12. Narmadha, S., & Selladurai, V. (2009). Multi-factory, Multi-Product Inventory Optimization using Genetic Algorithm for Efficient Supply Chain Management. JCSNSInternational Journal of Computer Science and Network Security, 9(12), 203–212.
  • 13. Nguegan Nguegan, C.A. & Mafini, C. (2017). Supply chain management problems in the food processing industry: Implications for business performance. Acta Commercii, 17(1), a485. https://doi.org/10.4102/ac.v17i1.485.
  • 14. Russo F., & Comi A. (2010). A classification of city logistics measures and connected impacts. Procedia Social and Behavioral Sciences, 2, 6355–6365. https://doi.org/10.1016/j.sbspro.2010.04.044.
  • 15. Song, L., Cherrett, T., McLeod, F., & Wei, G. (2009). Addressing the last mile problem. Transport impacts of collection and delivery points. Transportation Research Record: Journal of the Transportation Research Board, 2097, 9–18. https://doi.org/10.3141/2097-02.
  • 16. Teoa J.S.E., Taniguchia E., & Qureshia A.G. (2012). Evaluating city logistics measure in e-commerce with multi-agent systems. Procedia – Social and Behavioral Sciences, 39, 349–359. https://doi.org/10.1016/j.sbspro.2012.03.113.
  • 17. Thierry, C., Narahari, Y., & Thomas A. (2010). The role of modeling and simulation in supply chain management. SCS M&S Magazine, 4, 1–8.
  • 18. Torkul, O., Yılmaz, R., Selvi, I.H., & Cesur, M.R. (2016). A real-time inventory model to manage variance of demand for decreasing inventory holding cost. Computers & Industrial Engineering, 102, 435–439. https://doi.org/10.1016/j.cie.2016.04.020.
  • 19. Xianglian C., & Hua L. (2013). Research on e-commerce logistics system informationization in China, Procedia – Social and Behavioral Sciences, 96, 838–843. https://doi.org/10.1016/j.sbspro.2013.08.095.
  • 20. Yu Y., Wang X., Zhong R.Y., & Huang G.Q., (2016). E-commerce Logistics in Supply Chain Management: Practice Perspective, Procedia CIRP, 52, pp. 179-185. https://doi.org/10.1016/j.procir.2016.08.002.
Document Type
Publication order reference
Identifiers
ISSN
1644-9584
YADDA identifier
bwmeta1.element.desklight-a5294ec1-5b33-457e-9bd0-100413895fbe
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.