PL
Klasyfikacja spektralna to rozwijająca się od końca poprzedniego wieku metoda analizy skupień. Metoda ta, mimo niekiedy niezbyt rozbudowanej podbudowy teoretycznej, daje bardzo dobre wyniki empiryczne zarówno na zbiorach testowych jak i na rzeczywistych zbiorach danych. Artykuł przedstawia najważniejsze kroki algorytmu klasyfikacji spektralnej, wskazuje sytuacje, w których stosowanie algorytmu daje duże lepsze rezultaty (mierzone indeksem Randa) niż inne metody analizy skupień. W zakończenie przedstawione są rekomendacje dotyczące sytuacji, w których warto stosować tą technikę klasyfikacji.