Full-text resources of CEJSH and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

Results found: 2

first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
Stochastic volatility (SV) models form a class of models applied to financial instrument volatility forecasting that is alternative to the one consisting of better known GARCH models. In contrast to GARCH models, the time-varying volatility in SV models is described by means of two uncorrelated stochastic processes. In this paper we apply stochastic volatility models to forecasting the daily volatility of the Warsaw Stock Exchange indices. The obtained forecasts are evaluated against the daily realized volatility understood as a sum of squared intraday returns. We also investigate the impact of entering the realized volatility as an additional explanatory variable on the quality of the forecasts.
PL
Modele zmienności stochastycznej (SV) stanowią drugą, obok bardziej znanych modeli typu GARCH, klasę modeli wykorzystywanych do prognozowania zmienności instrumentów finansowych. W przeciwieństwie do modeli rodziny GARCH, w modelach SV ewolucja zmienności w czasie jest opisywana za pomocą dwóch nieskorelowanych procesów stochastycznych. W niniejszym artykule modele SV są stosowane do prognozowania dziennej zmienności indeksów Giełdy Papierów Wartościowych w Warszawie. Otrzymywane prognozy odnoszone są do dziennej zmienności zrealizowanej, rozumianej jak o suma kwadratów zwrotów śróddziennych. Ponadto badany jest wpływ, jaki na jakość prognoz ma wprowadzenie do modelu SV dziennej zmienności zrealizowanej jako dodatkowej zmiennej objaśniającej.
EN
It is generally acknowledged that squared daily returns on a financial instrument provide a poor approximation of its daily volatility. It was first pointed out by Andersen and Bollerslev that more accurate estimates are obtained with the realized volatility calculated as the sum of squared intraday returns corresponding to high-frequency data. In this paper we show how the volatility forecasts for the stock index WIG provided by the popular GARCH(I,I) improve when instead of daily squared returns they are evaluated against the realized volatility.
PL
Powszechnie uważa się, że kwadraty dziennych zwrotów instrumentu Finansowego słabo aproksymują jego dzienną zmienność. Andersen i Bollerslev jako pierwsi zauważyli, że bardziej dokładne oszacowania zmienności można otrzymać za pomocą zmienności liczonej jako suma kwadratów zwrotów śróddziennych, odpowiadających danym o wyższej częstotliwości. W niniejszym artykule pokazujemy, o ile poprawiają się prognozy zmienności indeksu giełdowego WIG, gdy zamiast do kwadratów zwrotów dziennych odnosi się je do zmienności zrealizowanej.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.